IEEE J Biomed Health Inform. 2021 Jan;25(1):22-34. doi: 10.1109/JBHI.2020.2984907. Epub 2021 Jan 5.
The increased worldwide prevalence of obesity has sparked the interest of the scientific community towards tools that objectively and automatically monitor eating behavior. Despite the study of obesity being in the spotlight, such tools can also be used to study eating disorders (e.g. anorexia nervosa) or provide a personalized monitoring platform for patients or athletes. This paper presents a complete framework towards the automated i) modeling of in-meal eating behavior and ii) temporal localization of meals, from raw inertial data collected in-the-wild using commercially available smartwatches. Initially, we present an end-to-end Neural Network which detects food intake events (i.e. bites). The proposed network uses both convolutional and recurrent layers that are trained simultaneously. Subsequently, we show how the distribution of the detected bites throughout the day can be used to estimate the start and end points of meals, using signal processing algorithms. We perform extensive evaluation on each framework part individually. Leave-one-subject-out (LOSO) evaluation shows that our bite detection approach outperforms four state-of-the-art algorithms towards the detection of bites during the course of a meal (0.923 F1 score). Furthermore, LOSO and held-out set experiments regarding the estimation of meal start/end points reveal that the proposed approach outperforms a relevant approach found in the literature (Jaccard Index of 0.820 and 0.821 for the LOSO and held-out experiments, respectively). Experiments are performed using our publicly available FIC and the newly introduced FreeFIC datasets.
全球肥胖患病率的上升引起了科学界对客观、自动监测进食行为的工具的兴趣。尽管肥胖研究备受关注,但这些工具也可用于研究饮食失调(例如神经性厌食症),或为患者或运动员提供个性化的监测平台。本文提出了一个完整的框架,用于从使用市售智能手表在自然环境中采集的原始惯性数据中,自动进行 i)进食行为的建模,以及 ii)进食时间的定位。首先,我们提出了一种端到端神经网络,用于检测进食事件(即咀嚼)。所提出的网络同时使用卷积层和循环层进行训练。随后,我们展示了如何使用信号处理算法,根据全天检测到的咀嚼分布来估计进食的开始和结束点。我们对每个框架部分进行了广泛的评估。单主体留一(LOSO)评估表明,我们的咀嚼检测方法在检测一餐过程中的咀嚼方面优于四种最先进的算法(0.923 的 F1 得分)。此外,关于估计进食开始/结束点的 LOSO 和保留数据集实验表明,所提出的方法优于文献中发现的相关方法(LOSO 和保留数据集实验的 Jaccard 指数分别为 0.820 和 0.821)。实验使用我们公开的 FIC 数据集和新引入的 FreeFIC 数据集进行。