Suppr超能文献

安全性:通过混合解决方案确保联邦环境中的安全 gwAs。

SAFETY: Secure gwAs in Federated Environment through a hYbrid Solution.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):93-102. doi: 10.1109/TCBB.2018.2829760. Epub 2018 Apr 24.

Abstract

Recent studies demonstrate that effective healthcare can benefit from using the human genomic information. Consequently, many institutions are using statistical analysis of genomic data, which are mostly based on genome-wide association studies (GWAS). GWAS analyze genome sequence variations in order to identify genetic risk factors for diseases. These studies often require pooling data from different sources together in order to unravel statistical patterns, and relationships between genetic variants and diseases. Here, the primary challenge is to fulfill one major objective: accessing multiple genomic data repositories for collaborative research in a privacy-preserving manner. Due to the privacy concerns regarding the genomic data, multi-jurisdictional laws and policies of cross-border genomic data sharing are enforced among different countries. In this article, we present SAFETY, a hybrid framework, which can securely perform GWAS on federated genomic datasets using homomorphic encryption and recently introduced secure hardware component of Intel Software Guard Extensions to ensure high efficiency and privacy at the same time. Different experimental settings show the efficacy and applicability of such hybrid framework in secure conduction of GWAS. To the best of our knowledge, this hybrid use of homomorphic encryption along with Intel SGX is not proposed to this date. SAFETY is up to 4.82 times faster than the best existing secure computation technique.

摘要

最近的研究表明,有效的医疗保健可以受益于使用人类基因组信息。因此,许多机构正在使用基因组数据分析,这些数据主要基于全基因组关联研究(GWAS)。GWAS 分析基因组序列变异,以确定疾病的遗传风险因素。这些研究通常需要将来自不同来源的数据汇集在一起,以揭示统计模式和遗传变异与疾病之间的关系。在这里,主要的挑战是实现一个主要目标:以保护隐私的方式访问多个基因组数据库,进行合作研究。由于对基因组数据的隐私问题的担忧,不同国家之间实施了涉及跨境基因组数据共享的多国法律和政策。在本文中,我们提出了 SAFETY,这是一个混合框架,可以使用同态加密在联邦基因组数据集中安全地执行 GWAS,并使用 Intel Software Guard Extensions 最近引入的安全硬件组件来确保高效性和隐私性。不同的实验设置表明了这种混合框架在安全进行 GWAS 方面的有效性和适用性。据我们所知,到目前为止,还没有提出这种同态加密与 Intel SGX 的混合使用。SAFETY 的速度比现有最好的安全计算技术快 4.82 倍。

相似文献

1
SAFETY: Secure gwAs in Federated Environment through a hYbrid Solution.
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):93-102. doi: 10.1109/TCBB.2018.2829760. Epub 2018 Apr 24.
4
PRESAGE: PRivacy-preserving gEnetic testing via SoftwAre Guard Extension.
BMC Med Genomics. 2017 Jul 26;10(Suppl 2):48. doi: 10.1186/s12920-017-0281-2.
5
SCOTCH: Secure Counting Of encrypTed genomiC data using a Hybrid approach.
AMIA Annu Symp Proc. 2018 Apr 16;2017:1744-1753. eCollection 2017.
6
Privacy-preserving genome-wide association studies on cloud environment using fully homomorphic encryption.
BMC Med Inform Decis Mak. 2015;15 Suppl 5(Suppl 5):S1. doi: 10.1186/1472-6947-15-S5-S1. Epub 2015 Dec 21.
7
Sketching algorithms for genomic data analysis and querying in a secure enclave.
Nat Methods. 2020 Mar;17(3):295-301. doi: 10.1038/s41592-020-0761-8. Epub 2020 Mar 4.
8
Secure large-scale genome-wide association studies using homomorphic encryption.
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11608-11613. doi: 10.1073/pnas.1918257117. Epub 2020 May 12.
9
Privacy-preserving approximate GWAS computation based on homomorphic encryption.
BMC Med Genomics. 2020 Jul 21;13(Suppl 7):77. doi: 10.1186/s12920-020-0722-1.
10
Privacy-preserving federated genome-wide association studies via dynamic sampling.
Bioinformatics. 2023 Oct 3;39(10). doi: 10.1093/bioinformatics/btad639.

引用本文的文献

1
Application of privacy protection technology to healthcare big data.
Digit Health. 2024 Nov 4;10:20552076241282242. doi: 10.1177/20552076241282242. eCollection 2024 Jan-Dec.
3
Efficacy of federated learning on genomic data: a study on the UK Biobank and the 1000 Genomes Project.
Front Big Data. 2024 Feb 29;7:1266031. doi: 10.3389/fdata.2024.1266031. eCollection 2024.
4
Federated generalized linear mixed models for collaborative genome-wide association studies.
iScience. 2023 Jun 28;26(8):107227. doi: 10.1016/j.isci.2023.107227. eCollection 2023 Aug 18.
5
Efficient Federated Kinship Relationship Identification.
AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:534-543. eCollection 2023.
6
Federated Analysis for Privacy-Preserving Data Sharing: A Technical and Legal Primer.
Annu Rev Genomics Hum Genet. 2023 Aug 25;24:347-368. doi: 10.1146/annurev-genom-110122-084756. Epub 2023 May 30.
7
The evolving privacy and security concerns for genomic data analysis and sharing as observed from the iDASH competition.
J Am Med Inform Assoc. 2022 Nov 14;29(12):2182-2190. doi: 10.1093/jamia/ocac165.
8
Sociotechnical safeguards for genomic data privacy.
Nat Rev Genet. 2022 Jul;23(7):429-445. doi: 10.1038/s41576-022-00455-y. Epub 2022 Mar 4.
10
Privacy-Preserving Artificial Intelligence Techniques in Biomedicine.
Methods Inf Med. 2022 Jun;61(S 01):e12-e27. doi: 10.1055/s-0041-1740630. Epub 2022 Jan 21.

本文引用的文献

1
Leaky Cauldron on the Dark Land: Understanding Memory Side-Channel Hazards in SGX.
Conf Comput Commun Secur. 2017 Oct-Nov;2017:2421-2434. doi: 10.1145/3133956.3134038.
2
Privacy-preserving techniques of genomic data-a survey.
Brief Bioinform. 2019 May 21;20(3):887-895. doi: 10.1093/bib/bbx139.
3
PREMIX: PRivacy-preserving EstiMation of Individual admiXture.
AMIA Annu Symp Proc. 2017 Feb 10;2016:1747-1755. eCollection 2016.
5
Enabling Privacy-Preserving GWASs in Heterogeneous Human Populations.
Cell Syst. 2016 Jul;3(1):54-61. doi: 10.1016/j.cels.2016.04.013. Epub 2016 Jul 21.
6
FORESEE: Fully Outsourced secuRe gEnome Study basEd on homomorphic Encryption.
BMC Med Inform Decis Mak. 2015;15 Suppl 5(Suppl 5):S5. doi: 10.1186/1472-6947-15-S5-S5. Epub 2015 Dec 21.
7
Privacy-preserving GWAS analysis on federated genomic datasets.
BMC Med Inform Decis Mak. 2015;15 Suppl 5(Suppl 5):S2. doi: 10.1186/1472-6947-15-S5-S2. Epub 2015 Dec 21.
8
Privacy-Preserving Data Exploration in Genome-Wide Association Studies.
KDD. 2013 Aug;2013:1079-1087. doi: 10.1145/2487575.2487687.
9
Redefining genomic privacy: trust and empowerment.
PLoS Biol. 2014 Nov 4;12(11):e1001983. doi: 10.1371/journal.pbio.1001983. eCollection 2014 Nov.
10
Routes for breaching and protecting genetic privacy.
Nat Rev Genet. 2014 Jun;15(6):409-21. doi: 10.1038/nrg3723. Epub 2014 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验