Suppr超能文献

安全性:通过混合解决方案确保联邦环境中的安全 gwAs。

SAFETY: Secure gwAs in Federated Environment through a hYbrid Solution.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):93-102. doi: 10.1109/TCBB.2018.2829760. Epub 2018 Apr 24.

Abstract

Recent studies demonstrate that effective healthcare can benefit from using the human genomic information. Consequently, many institutions are using statistical analysis of genomic data, which are mostly based on genome-wide association studies (GWAS). GWAS analyze genome sequence variations in order to identify genetic risk factors for diseases. These studies often require pooling data from different sources together in order to unravel statistical patterns, and relationships between genetic variants and diseases. Here, the primary challenge is to fulfill one major objective: accessing multiple genomic data repositories for collaborative research in a privacy-preserving manner. Due to the privacy concerns regarding the genomic data, multi-jurisdictional laws and policies of cross-border genomic data sharing are enforced among different countries. In this article, we present SAFETY, a hybrid framework, which can securely perform GWAS on federated genomic datasets using homomorphic encryption and recently introduced secure hardware component of Intel Software Guard Extensions to ensure high efficiency and privacy at the same time. Different experimental settings show the efficacy and applicability of such hybrid framework in secure conduction of GWAS. To the best of our knowledge, this hybrid use of homomorphic encryption along with Intel SGX is not proposed to this date. SAFETY is up to 4.82 times faster than the best existing secure computation technique.

摘要

最近的研究表明,有效的医疗保健可以受益于使用人类基因组信息。因此,许多机构正在使用基因组数据分析,这些数据主要基于全基因组关联研究(GWAS)。GWAS 分析基因组序列变异,以确定疾病的遗传风险因素。这些研究通常需要将来自不同来源的数据汇集在一起,以揭示统计模式和遗传变异与疾病之间的关系。在这里,主要的挑战是实现一个主要目标:以保护隐私的方式访问多个基因组数据库,进行合作研究。由于对基因组数据的隐私问题的担忧,不同国家之间实施了涉及跨境基因组数据共享的多国法律和政策。在本文中,我们提出了 SAFETY,这是一个混合框架,可以使用同态加密在联邦基因组数据集中安全地执行 GWAS,并使用 Intel Software Guard Extensions 最近引入的安全硬件组件来确保高效性和隐私性。不同的实验设置表明了这种混合框架在安全进行 GWAS 方面的有效性和适用性。据我们所知,到目前为止,还没有提出这种同态加密与 Intel SGX 的混合使用。SAFETY 的速度比现有最好的安全计算技术快 4.82 倍。

相似文献

1
SAFETY: Secure gwAs in Federated Environment through a hYbrid Solution.安全性:通过混合解决方案确保联邦环境中的安全 gwAs。
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):93-102. doi: 10.1109/TCBB.2018.2829760. Epub 2018 Apr 24.
8
Secure large-scale genome-wide association studies using homomorphic encryption.使用同态加密技术保护大规模全基因组关联研究。
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11608-11613. doi: 10.1073/pnas.1918257117. Epub 2020 May 12.

引用本文的文献

1
Application of privacy protection technology to healthcare big data.隐私保护技术在医疗大数据中的应用。
Digit Health. 2024 Nov 4;10:20552076241282242. doi: 10.1177/20552076241282242. eCollection 2024 Jan-Dec.
5
Efficient Federated Kinship Relationship Identification.高效的联邦亲属关系识别
AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:534-543. eCollection 2023.
6
Federated Analysis for Privacy-Preserving Data Sharing: A Technical and Legal Primer.联邦分析用于隐私保护的数据共享:技术和法律基础
Annu Rev Genomics Hum Genet. 2023 Aug 25;24:347-368. doi: 10.1146/annurev-genom-110122-084756. Epub 2023 May 30.
8
Sociotechnical safeguards for genomic data privacy.基因组数据隐私的社会技术保障措施。
Nat Rev Genet. 2022 Jul;23(7):429-445. doi: 10.1038/s41576-022-00455-y. Epub 2022 Mar 4.
10
Privacy-Preserving Artificial Intelligence Techniques in Biomedicine.生物医学中的隐私保护人工智能技术。
Methods Inf Med. 2022 Jun;61(S 01):e12-e27. doi: 10.1055/s-0041-1740630. Epub 2022 Jan 21.

本文引用的文献

2
Privacy-preserving techniques of genomic data-a survey.基因组数据隐私保护技术综述。
Brief Bioinform. 2019 May 21;20(3):887-895. doi: 10.1093/bib/bbx139.
5
Enabling Privacy-Preserving GWASs in Heterogeneous Human Populations.在异质人群中实现保护隐私的 GWASs。
Cell Syst. 2016 Jul;3(1):54-61. doi: 10.1016/j.cels.2016.04.013. Epub 2016 Jul 21.
6
FORESEE: Fully Outsourced secuRe gEnome Study basEd on homomorphic Encryption.FORESEE:基于同态加密的全外包安全基因组研究
BMC Med Inform Decis Mak. 2015;15 Suppl 5(Suppl 5):S5. doi: 10.1186/1472-6947-15-S5-S5. Epub 2015 Dec 21.
7
Privacy-preserving GWAS analysis on federated genomic datasets.联邦基因组数据集上的隐私保护全基因组关联研究分析
BMC Med Inform Decis Mak. 2015;15 Suppl 5(Suppl 5):S2. doi: 10.1186/1472-6947-15-S5-S2. Epub 2015 Dec 21.
9
Redefining genomic privacy: trust and empowerment.重新定义基因组隐私:信任与赋权。
PLoS Biol. 2014 Nov 4;12(11):e1001983. doi: 10.1371/journal.pbio.1001983. eCollection 2014 Nov.
10
Routes for breaching and protecting genetic privacy.突破和保护遗传隐私的途径。
Nat Rev Genet. 2014 Jun;15(6):409-21. doi: 10.1038/nrg3723. Epub 2014 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验