IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):93-102. doi: 10.1109/TCBB.2018.2829760. Epub 2018 Apr 24.
Recent studies demonstrate that effective healthcare can benefit from using the human genomic information. Consequently, many institutions are using statistical analysis of genomic data, which are mostly based on genome-wide association studies (GWAS). GWAS analyze genome sequence variations in order to identify genetic risk factors for diseases. These studies often require pooling data from different sources together in order to unravel statistical patterns, and relationships between genetic variants and diseases. Here, the primary challenge is to fulfill one major objective: accessing multiple genomic data repositories for collaborative research in a privacy-preserving manner. Due to the privacy concerns regarding the genomic data, multi-jurisdictional laws and policies of cross-border genomic data sharing are enforced among different countries. In this article, we present SAFETY, a hybrid framework, which can securely perform GWAS on federated genomic datasets using homomorphic encryption and recently introduced secure hardware component of Intel Software Guard Extensions to ensure high efficiency and privacy at the same time. Different experimental settings show the efficacy and applicability of such hybrid framework in secure conduction of GWAS. To the best of our knowledge, this hybrid use of homomorphic encryption along with Intel SGX is not proposed to this date. SAFETY is up to 4.82 times faster than the best existing secure computation technique.
最近的研究表明,有效的医疗保健可以受益于使用人类基因组信息。因此,许多机构正在使用基因组数据分析,这些数据主要基于全基因组关联研究(GWAS)。GWAS 分析基因组序列变异,以确定疾病的遗传风险因素。这些研究通常需要将来自不同来源的数据汇集在一起,以揭示统计模式和遗传变异与疾病之间的关系。在这里,主要的挑战是实现一个主要目标:以保护隐私的方式访问多个基因组数据库,进行合作研究。由于对基因组数据的隐私问题的担忧,不同国家之间实施了涉及跨境基因组数据共享的多国法律和政策。在本文中,我们提出了 SAFETY,这是一个混合框架,可以使用同态加密在联邦基因组数据集中安全地执行 GWAS,并使用 Intel Software Guard Extensions 最近引入的安全硬件组件来确保高效性和隐私性。不同的实验设置表明了这种混合框架在安全进行 GWAS 方面的有效性和适用性。据我们所知,到目前为止,还没有提出这种同态加密与 Intel SGX 的混合使用。SAFETY 的速度比现有最好的安全计算技术快 4.82 倍。