Suppr超能文献

联邦基因组数据集上的隐私保护全基因组关联研究分析

Privacy-preserving GWAS analysis on federated genomic datasets.

作者信息

Constable Scott D, Tang Yuzhe, Wang Shuang, Jiang Xiaoqian, Chapin Steve

出版信息

BMC Med Inform Decis Mak. 2015;15 Suppl 5(Suppl 5):S2. doi: 10.1186/1472-6947-15-S5-S2. Epub 2015 Dec 21.

Abstract

BACKGROUND

The biomedical community benefits from the increasing availability of genomic data to support meaningful scientific research, e.g., Genome-Wide Association Studies (GWAS). However, high quality GWAS usually requires a large amount of samples, which can grow beyond the capability of a single institution. Federated genomic data analysis holds the promise of enabling cross-institution collaboration for effective GWAS, but it raises concerns about patient privacy and medical information confidentiality (as data are being exchanged across institutional boundaries), which becomes an inhibiting factor for the practical use.

METHODS

We present a privacy-preserving GWAS framework on federated genomic datasets. Our method is to layer the GWAS computations on top of secure multi-party computation (MPC) systems. This approach allows two parties in a distributed system to mutually perform secure GWAS computations, but without exposing their private data outside.

RESULTS

We demonstrate our technique by implementing a framework for minor allele frequency counting and χ2 statistics calculation, one of typical computations used in GWAS. For efficient prototyping, we use a state-of-the-art MPC framework, i.e., Portable Circuit Format (PCF) 1. Our experimental results show promise in realizing both efficient and secure cross-institution GWAS computations.

摘要

背景

生物医学界受益于越来越多的基因组数据,以支持有意义的科学研究,例如全基因组关联研究(GWAS)。然而,高质量的GWAS通常需要大量样本,这可能超出单个机构的能力范围。联邦基因组数据分析有望实现跨机构合作以进行有效的GWAS,但它引发了对患者隐私和医疗信息保密性的担忧(因为数据在机构边界之间交换),这成为实际应用的一个阻碍因素。

方法

我们提出了一个关于联邦基因组数据集的隐私保护GWAS框架。我们的方法是在安全多方计算(MPC)系统之上分层进行GWAS计算。这种方法允许分布式系统中的两方相互执行安全的GWAS计算,但不会将其私有数据暴露给外部。

结果

我们通过实现一个用于次要等位基因频率计数和χ2统计计算的框架来展示我们的技术,这是GWAS中使用的典型计算之一。为了进行高效的原型设计,我们使用了一种先进的MPC框架,即便携式电路格式(PCF)1。我们的实验结果显示了在实现高效且安全的跨机构GWAS计算方面的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c63/4699163/134a8ef6d573/1472-6947-15-S5-S2-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验