Suppr超能文献

公主:通过软件保护扩展进行加密的隐私保护罕见病国际网络协作。

PRINCESS: Privacy-protecting Rare disease International Network Collaboration via Encryption through Software guard extensionS.

作者信息

Chen Feng, Wang Shuang, Jiang Xiaoqian, Ding Sijie, Lu Yao, Kim Jihoon, Sahinalp S Cenk, Shimizu Chisato, Burns Jane C, Wright Victoria J, Png Eileen, Hibberd Martin L, Lloyd David D, Yang Hai, Telenti Amalio, Bloss Cinnamon S, Fox Dov, Lauter Kristin, Ohno-Machado Lucila

机构信息

Health System Department of Biomedical Informatics, University of California San Diego, La Jolla, CA, USA.

Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.

出版信息

Bioinformatics. 2017 Mar 15;33(6):871-878. doi: 10.1093/bioinformatics/btw758.

Abstract

MOTIVATION

We introduce PRINCESS, a privacy-preserving international collaboration framework for analyzing rare disease genetic data that are distributed across different continents. PRINCESS leverages Software Guard Extensions (SGX) and hardware for trustworthy computation. Unlike a traditional international collaboration model, where individual-level patient DNA are physically centralized at a single site, PRINCESS performs a secure and distributed computation over encrypted data, fulfilling institutional policies and regulations for protected health information.

RESULTS

To demonstrate PRINCESS' performance and feasibility, we conducted a family-based allelic association study for Kawasaki Disease, with data hosted in three different continents. The experimental results show that PRINCESS provides secure and accurate analyses much faster than alternative solutions, such as homomorphic encryption and garbled circuits (over 40 000× faster).

AVAILABILITY AND IMPLEMENTATION

https://github.com/achenfengb/PRINCESS_opensource.

CONTACT

shw070@ucsd.edu.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

我们推出了PRINCESS,这是一个用于分析分布在不同大陆的罕见病基因数据的隐私保护国际合作框架。PRINCESS利用软件防护扩展(SGX)和硬件进行可信计算。与传统的国际合作模式不同,在传统模式中个体水平的患者DNA会实际集中在一个单一地点,而PRINCESS对加密数据进行安全的分布式计算,符合关于受保护健康信息的机构政策和法规。

结果

为了证明PRINCESS的性能和可行性,我们针对川崎病进行了一项基于家系的等位基因关联研究,数据存储在三个不同的大陆。实验结果表明,PRINCESS提供安全且准确的分析,比诸如同态加密和混淆电路等替代解决方案快得多(快超过40000倍)。

可用性和实现

https://github.com/achenfengb/PRINCESS_opensource。

联系方式

shw070@ucsd.edu

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

5
SAFETY: Secure gwAs in Federated Environment through a hYbrid Solution.安全性:通过混合解决方案确保联邦环境中的安全 gwAs。
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):93-102. doi: 10.1109/TCBB.2018.2829760. Epub 2018 Apr 24.
8
Secure large-scale genome-wide association studies using homomorphic encryption.使用同态加密技术保护大规模全基因组关联研究。
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11608-11613. doi: 10.1073/pnas.1918257117. Epub 2020 May 12.

引用本文的文献

5
Sociotechnical safeguards for genomic data privacy.基因组数据隐私的社会技术保障措施。
Nat Rev Genet. 2022 Jul;23(7):429-445. doi: 10.1038/s41576-022-00455-y. Epub 2022 Mar 4.
6
Privacy-Preserving Artificial Intelligence Techniques in Biomedicine.生物医学中的隐私保护人工智能技术。
Methods Inf Med. 2022 Jun;61(S 01):e12-e27. doi: 10.1055/s-0041-1740630. Epub 2022 Jan 21.
8
Privacy-preserving genotype imputation in a trusted execution environment.在可信执行环境中进行隐私保护的基因型推断。
Cell Syst. 2021 Oct 20;12(10):983-993.e7. doi: 10.1016/j.cels.2021.08.001. Epub 2021 Aug 26.
10
A secure system for genomics clinical decision support.一种用于基因组学临床决策支持的安全系统。
J Biomed Inform. 2020 Dec;112:103602. doi: 10.1016/j.jbi.2020.103602. Epub 2020 Oct 17.

本文引用的文献

7
Privacy-preserving GWAS analysis on federated genomic datasets.联邦基因组数据集上的隐私保护全基因组关联研究分析
BMC Med Inform Decis Mak. 2015;15 Suppl 5(Suppl 5):S2. doi: 10.1186/1472-6947-15-S5-S2. Epub 2015 Dec 21.
8
VERTIcal Grid lOgistic regression (VERTIGO).垂直网格逻辑回归(VERTIGO)。
J Am Med Inform Assoc. 2016 May;23(3):570-9. doi: 10.1093/jamia/ocv146. Epub 2015 Nov 9.
9
Privacy Risks from Genomic Data-Sharing Beacons.基因组数据共享信标带来的隐私风险。
Am J Hum Genet. 2015 Nov 5;97(5):631-46. doi: 10.1016/j.ajhg.2015.09.010. Epub 2015 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验