IEEE Trans Neural Netw Learn Syst. 2018 Dec;29(12):6252-6263. doi: 10.1109/TNNLS.2018.2827778. Epub 2018 May 10.
Mean square error (MSE) is the most prominent criterion in training neural networks and has been employed in numerous learning problems. In this paper, we suggest a group of novel robust information theoretic backpropagation (BP) methods, as correntropy-based conjugate gradient BP (CCG-BP). CCG-BP algorithms converge faster than the common correntropy-based BP algorithms and have better performance than the common CG-BP algorithms based on MSE, especially in nonGaussian environments and in cases with impulsive noise or heavy-tailed distributions noise. In addition, a convergence analysis of this new type of method is particularly considered. Numerical results for several samples of function approximation, synthetic function estimation, and chaotic time series prediction illustrate that our new BP method is more robust than the MSE-based method in the sense of impulsive noise, especially when SNR is low.
均方误差 (MSE) 是训练神经网络时最常用的标准,已经被应用于许多学习问题中。在本文中,我们提出了一组新的稳健信息论反向传播 (BP) 方法,即基于相关熵的共轭梯度 BP(CCG-BP)。CCG-BP 算法比常见的基于相关熵的 BP 算法收敛速度更快,并且在非高斯环境和存在脉冲噪声或重尾分布噪声的情况下,比基于 MSE 的常见 CG-BP 算法性能更好。此外,还特别考虑了这种新型方法的收敛分析。在函数逼近、合成函数估计和混沌时间序列预测的几个样本的数值结果表明,在存在脉冲噪声的情况下,我们的新 BP 方法比基于 MSE 的方法更稳健,特别是在 SNR 较低时。