IEEE J Biomed Health Inform. 2019 Mar;23(2):779-786. doi: 10.1109/JBHI.2018.2835405. Epub 2018 May 10.
We propose a novel approach to identify one of the most significant dermoscopic criteria in the diagnosis of cutaneous Melanoma: the blue-white structure (BWS). In this paper, we achieve this goal in a multiple instance learning (MIL) framework using only image-level labels indicating whether the feature is present or not. To this aim, each image is represented as a bag of (nonoverlapping) regions, where each region may or may not be identified as an instance of BWS. A probabilistic graphical model is trained (in MIL fashion) to predict the bag (image) labels. As output, we predict the classification label for the image (i.e., the presence or absence of BWS in each image) and we also localize the feature in the image. Experiments are conducted on a challenging dataset with results outperforming state-of-the-art techniques, with BWS detection besting competing methods in terms of performance. This study provides an improvement on the scope of modeling for computerized image analysis of skin lesions. In particular, it propounds a framework for identification of dermoscopic local features from weakly labeled data.
我们提出了一种新的方法来识别皮肤黑色素瘤诊断中最重要的皮肤镜特征之一:蓝白结构(BWS)。在本文中,我们仅使用图像级标签(表示特征是否存在),在多示例学习(MIL)框架中实现了这一目标。为此,每个图像都表示为一个(非重叠)区域的袋子,其中每个区域可能被识别为 BWS 的实例,也可能没有。然后,我们训练一个概率图形模型(以 MIL 方式)来预测袋(图像)标签。作为输出,我们预测图像的分类标签(即,每个图像中是否存在 BWS),并在图像中定位特征。我们在具有挑战性的数据集上进行了实验,结果优于最先进的技术,BWS 检测在性能方面优于竞争方法。这项研究提高了计算机皮肤病变图像分析的建模范围。特别是,它提出了一种从弱标记数据中识别皮肤镜局部特征的框架。
IEEE J Biomed Health Inform. 2018-5-10
IEEE Trans Biomed Eng. 2018-8-20
IEEE J Biomed Health Inform. 2018-5-22
Annu Int Conf IEEE Eng Med Biol Soc. 2010
IEEE J Biomed Health Inform. 2018-5-2
IEEE J Biomed Health Inform. 2018-5-1
Comput Methods Programs Biomed. 2018-5-8
IEEE J Biomed Health Inform. 2020-10
IEEE J Biomed Health Inform. 2017-12-25
IEEE J Transl Eng Health Med. 2023
Diagnostics (Basel). 2021-7-31
BMC Med Inform Decis Mak. 2019-1-7