文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于弱监督学习的皮肤镜图像中蓝白结构检测

Learning to Detect Blue-White Structures in Dermoscopy Images With Weak Supervision.

出版信息

IEEE J Biomed Health Inform. 2019 Mar;23(2):779-786. doi: 10.1109/JBHI.2018.2835405. Epub 2018 May 10.


DOI:10.1109/JBHI.2018.2835405
PMID:29993758
Abstract

We propose a novel approach to identify one of the most significant dermoscopic criteria in the diagnosis of cutaneous Melanoma: the blue-white structure (BWS). In this paper, we achieve this goal in a multiple instance learning (MIL) framework using only image-level labels indicating whether the feature is present or not. To this aim, each image is represented as a bag of (nonoverlapping) regions, where each region may or may not be identified as an instance of BWS. A probabilistic graphical model is trained (in MIL fashion) to predict the bag (image) labels. As output, we predict the classification label for the image (i.e., the presence or absence of BWS in each image) and we also localize the feature in the image. Experiments are conducted on a challenging dataset with results outperforming state-of-the-art techniques, with BWS detection besting competing methods in terms of performance. This study provides an improvement on the scope of modeling for computerized image analysis of skin lesions. In particular, it propounds a framework for identification of dermoscopic local features from weakly labeled data.

摘要

我们提出了一种新的方法来识别皮肤黑色素瘤诊断中最重要的皮肤镜特征之一:蓝白结构(BWS)。在本文中,我们仅使用图像级标签(表示特征是否存在),在多示例学习(MIL)框架中实现了这一目标。为此,每个图像都表示为一个(非重叠)区域的袋子,其中每个区域可能被识别为 BWS 的实例,也可能没有。然后,我们训练一个概率图形模型(以 MIL 方式)来预测袋(图像)标签。作为输出,我们预测图像的分类标签(即,每个图像中是否存在 BWS),并在图像中定位特征。我们在具有挑战性的数据集上进行了实验,结果优于最先进的技术,BWS 检测在性能方面优于竞争方法。这项研究提高了计算机皮肤病变图像分析的建模范围。特别是,它提出了一种从弱标记数据中识别皮肤镜局部特征的框架。

相似文献

[1]
Learning to Detect Blue-White Structures in Dermoscopy Images With Weak Supervision.

IEEE J Biomed Health Inform. 2018-5-10

[2]
Melanoma Recognition in Dermoscopy Images via Aggregated Deep Convolutional Features.

IEEE Trans Biomed Eng. 2018-8-20

[3]
Supervised Saliency Map Driven Segmentation of Lesions in Dermoscopic Images.

IEEE J Biomed Health Inform. 2018-5-22

[4]
Boosting instance prototypes to detect local dermoscopic features.

Annu Int Conf IEEE Eng Med Biol Soc. 2010

[5]
Active Contours Based Segmentation and Lesion Periphery Analysis For Characterization of Skin Lesions in Dermoscopy Images.

IEEE J Biomed Health Inform. 2018-5-2

[6]
Fully Convolutional Neural Networks to Detect Clinical Dermoscopic Features.

IEEE J Biomed Health Inform. 2018-5-1

[7]
Melanoma recognition in dermoscopy images using lesion's peripheral region information.

Comput Methods Programs Biomed. 2018-5-8

[8]
An End-to-End Multi-Task Deep Learning Framework for Skin Lesion Analysis.

IEEE J Biomed Health Inform. 2020-10

[9]
Improving Dermoscopic Image Segmentation with Enhanced Convolutional-Deconvolutional Networks.

IEEE J Biomed Health Inform. 2017-12-25

[10]
Real-time supervised detection of pink areas in dermoscopic images of melanoma: importance of color shades, texture and location.

Skin Res Technol. 2015-11

引用本文的文献

[1]
Multiple Field-of-View Based Attention Driven Network for Weakly Supervised Common Bile Duct Stone Detection.

IEEE J Transl Eng Health Med. 2023

[2]
Machine Learning and Deep Learning Methods for Skin Lesion Classification and Diagnosis: A Systematic Review.

Diagnostics (Basel). 2021-7-31

[3]
A clinical text classification paradigm using weak supervision and deep representation.

BMC Med Inform Decis Mak. 2019-1-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索