Suppr超能文献

一种用于皮肤损伤分析的端到端多任务深度学习框架。

An End-to-End Multi-Task Deep Learning Framework for Skin Lesion Analysis.

出版信息

IEEE J Biomed Health Inform. 2020 Oct;24(10):2912-2921. doi: 10.1109/JBHI.2020.2973614. Epub 2020 Feb 13.

Abstract

Automatic skin lesion analysis of dermoscopy images remains a challenging topic. In this paper, we propose an end-to-end multi-task deep learning framework for automatic skin lesion analysis. The proposed framework can perform skin lesion detection, classification, and segmentation tasks simultaneously. To address the class imbalance issue in the dataset (as often observed in medical image datasets) and meanwhile to improve the segmentation performance, a loss function based on the focal loss and the jaccard distance is proposed. During the framework training, we employ a three-phase joint training strategy to ensure the efficiency of feature learning. The proposed framework outperforms state-of-the-art methods on the benchmarks ISBI 2016 challenge dataset towards melanoma classification and ISIC 2017 challenge dataset towards melanoma segmentation, especially for the segmentation task. The proposed framework should be a promising computer-aided tool for melanoma diagnosis.

摘要

自动皮肤病变分析的皮肤镜图像仍然是一个具有挑战性的课题。在本文中,我们提出了一种端到端的多任务深度学习框架,用于自动皮肤病变分析。所提出的框架可以同时执行皮肤病变检测、分类和分割任务。为了解决数据集(在医学图像数据集中经常观察到的)中的类别不平衡问题,同时提高分割性能,提出了一种基于焦点损失和杰卡德距离的损失函数。在框架训练过程中,我们采用了一个三阶段联合训练策略,以确保特征学习的效率。该框架在基准 ISBI 2016 挑战赛数据集的黑色素瘤分类和 ISIC 2017 挑战赛数据集的黑色素瘤分割方面优于最先进的方法,特别是在分割任务方面。该框架应该是一种有前途的用于黑色素瘤诊断的计算机辅助工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验