Suppr超能文献

增强型卷积-反卷积网络在皮肤镜图像分割中的应用。

Improving Dermoscopic Image Segmentation with Enhanced Convolutional-Deconvolutional Networks.

出版信息

IEEE J Biomed Health Inform. 2019 Mar;23(2):519-526. doi: 10.1109/JBHI.2017.2787487. Epub 2017 Dec 25.

Abstract

Automatic skin lesion segmentation on dermoscopic images is an essential step in computer-aided diagnosis of melanoma. However, this task is challenging due to significant variations of lesion appearances across different patients. This challenge is further exacerbated when dealing with a large amount of image data. In this paper, we extended our previous work by developing a deeper network architecture with smaller kernels to enhance its discriminant capacity. In addition, we explicitly included color information from multiple color spaces to facilitate network training and thus to further improve the segmentation performance. We participated and extensively evaluated our method on the ISBI 2017 skin lesion segmentation challenge. By training with the 2000 challenge training images, our method achieved an average Jaccard Index (JA) of 0:765 on the 600 challenge testing images, which ranked itself in the first place among 21 final submissions in the challenge.

摘要

自动进行皮肤病变分割是基于图像的皮肤癌辅助诊断的重要步骤。然而,由于病变在不同患者之间的表现存在显著差异,因此这项任务极具挑战性。当处理大量图像数据时,这种挑战更加严重。在本文中,我们通过开发具有较小核的更深网络架构扩展了我们之前的工作,以提高其判别能力。此外,我们还明确包含了来自多个颜色空间的颜色信息,以方便网络训练,从而进一步提高分割性能。我们参与了 ISBI 2017 皮肤病变分割挑战赛,并对我们的方法进行了广泛评估。通过使用 2000 张挑战赛训练图像进行训练,我们的方法在 600 张挑战赛测试图像上的平均 Jaccard 指数 (JA) 为 0.765,在挑战赛的 21 个最终提交中排名第一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验