Suppr超能文献

基于多视场注意驱动网络的弱监督胆总管结石检测

Multiple Field-of-View Based Attention Driven Network for Weakly Supervised Common Bile Duct Stone Detection.

机构信息

Department of Computer Science and EngineeringNational Chung Hsing University Taichung 402202 Taiwan.

Department of Internal MedicineNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung University Tainan 701401 Taiwan.

出版信息

IEEE J Transl Eng Health Med. 2023 Jun 15;11:394-404. doi: 10.1109/JTEHM.2023.3286423. eCollection 2023.

Abstract

OBJECTIVE

Common bile duct (CBD) stones caused diseases are life-threatening. Because CBD stones locate in the distal part of the CBD and have relatively small sizes, detecting CBD stones from CT scans is a challenging issue in the medical domain.

METHODS AND PROCEDURES

We propose a deep learning based weakly-supervised method called multiple field-of-view based attention driven network (MFADNet) to detect CBD stones from CT scans based on image-level labels. Three dominant modules including a multiple field-of-view encoder, an attention driven decoder and a classification network are collaborated in the network. The encoder learns the feature of multi-scale contextual information while the decoder with the classification network is applied to locate the CBD stones based on spatial-channel attentions. To drive the learning of the whole network in a weakly-supervised and end-to-end trainable manner, four losses including the foreground loss, background loss, consistency loss and classification loss are proposed.

RESULTS

Compared with state-of-the-art weakly-supervised methods in the experiments, the proposed method can accurately classify and locate CBD stones based on the quantitative and qualitative results.

CONCLUSION

We propose a novel multiple field-of-view based attention driven network for a new medical application of CBD stone detection from CT scans while only image-levels are required to reduce the burdens of labeling and help physicians automatically diagnose CBD stones. The source code is available at https://github.com/nchucvml/MFADNet after acceptance.

CLINICAL IMPACT

Our deep learning method can help physicians localize relatively small CBD stones for effectively diagnosing CBD stone caused diseases.

摘要

目的

胆总管(CBD)结石引起的疾病危及生命。由于 CBD 结石位于 CBD 的远端且体积相对较小,因此从 CT 扫描中检测 CBD 结石是医学领域的一个具有挑战性的问题。

方法和程序

我们提出了一种基于深度学习的弱监督方法,称为多视野注意力驱动网络(MFADNet),用于基于图像级标签从 CT 扫描中检测 CBD 结石。该网络合作了三个主要模块,包括多视野编码器、注意力驱动解码器和分类网络。编码器学习多尺度上下文信息的特征,而解码器与分类网络一起应用于基于空间通道注意力定位 CBD 结石。为了以弱监督和端到端可训练的方式驱动整个网络的学习,提出了包括前景损失、背景损失、一致性损失和分类损失在内的四种损失。

结果

与实验中的最先进的弱监督方法相比,该方法可以根据定量和定性结果准确地分类和定位 CBD 结石。

结论

我们提出了一种新的基于多视野的注意力驱动网络,用于从 CT 扫描中进行新的医学 CBD 结石检测应用,而仅需要图像级别的标签,以减轻标签负担并帮助医生自动诊断 CBD 结石。在接受后,源代码可在 https://github.com/nchucvml/MFADNet 上获得。

临床影响

我们的深度学习方法可以帮助医生定位相对较小的 CBD 结石,从而有效诊断 CBD 结石引起的疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b8f/10351611/e330b5871451/huang1-3286423.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验