Suppr超能文献

手指佩戴式加速度计在非卧床环境下监测手部使用情况的应用。

The Use of a Finger-Worn Accelerometer for Monitoring of Hand Use in Ambulatory Settings.

出版信息

IEEE J Biomed Health Inform. 2019 Mar;23(2):599-606. doi: 10.1109/JBHI.2018.2821136. Epub 2018 Mar 30.

Abstract

Objective assessment of stroke survivors' upper limb movements in ambulatory settings can provide clinicians with important information regarding the real impact of rehabilitation outside the clinic and help to establish individually-tailored therapeutic programs. This paper explores a novel approach to monitor the amount of hand use, which is relevant to the purposeful, goal-directed use of the limbs, based on a body networked sensor system composed of miniaturized finger- and wrist-worn accelerometers. The main contributions of this paper are twofold. First, this paper introduces and validates a new benchmark measurement of the amount of hand use based on data recorded by a motion capture system, the gold standard for human movement analysis. Second, this paper introduces a machine learning-based analytic pipeline that estimates the amount of hand use using data obtained from the wearable sensors and validates its estimation performance against the aforementioned benchmark measurement. Based on data collected from 18 neurologically intact individuals performing 11 motor tasks resembling various activities of daily living, the analytic results presented herein show that our new benchmark measure is reliable and responsive, and that the proposed wearable system can yield an accurate estimation of the amount of hand use (normalized root mean square error of 0.11 and average Pearson correlation of 0.78). This study has the potential to open up new research and clinical opportunities for monitoring hand function in ambulatory settings, ultimately enabling evidence-based, patient-centered rehabilitation and healthcare.

摘要

客观评估脑卒中幸存者在日常活动环境中的上肢运动,可为临床医生提供有关康复治疗在诊所外实际影响的重要信息,并有助于制定个性化的治疗方案。本文探讨了一种基于身体联网传感器系统监测手部使用量的新方法,该系统由微型手指和手腕佩戴的加速度计组成,与有目的、有针对性的肢体使用相关。本文的主要贡献有两点。首先,本文介绍并验证了一种新的基于运动捕捉系统(人体运动分析的金标准)记录的数据来测量手部使用量的基准方法。其次,本文介绍了一种基于机器学习的分析管道,该管道使用可穿戴传感器获取的数据来估计手部使用量,并针对上述基准测量方法验证其估计性能。基于 18 名神经正常个体在进行 11 项类似于各种日常生活活动的运动任务时收集的数据,本文的分析结果表明,我们的新基准测量方法可靠且灵敏,所提出的可穿戴系统可以对手部使用量进行准确估计(归一化均方根误差为 0.11,平均皮尔逊相关系数为 0.78)。这项研究有可能为在日常活动环境中监测手部功能开辟新的研究和临床机会,最终实现基于证据、以患者为中心的康复和医疗保健。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验