Suppr超能文献

相似文献

1
Reshaping Movement Distributions With Limit-Push Robotic Training.
IEEE Trans Neural Syst Rehabil Eng. 2018 Nov;26(11):2134-2144. doi: 10.1109/TNSRE.2018.2839565. Epub 2018 May 21.
2
Robot-based hand motor therapy after stroke.
Brain. 2008 Feb;131(Pt 2):425-37. doi: 10.1093/brain/awm311. Epub 2007 Dec 20.
3
Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
J Neuroeng Rehabil. 2017 Jun 12;14(1):55. doi: 10.1186/s12984-017-0254-x.
4
Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors.
Exp Brain Res. 2006 Jan;168(3):368-83. doi: 10.1007/s00221-005-0097-8. Epub 2005 Oct 26.
5
Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke.
J Neuroeng Rehabil. 2016 May 11;13(1):45. doi: 10.1186/s12984-016-0153-6.
6
Effects of a robot-aided somatosensory training on proprioception and motor function in stroke survivors.
J Neuroeng Rehabil. 2021 May 10;18(1):77. doi: 10.1186/s12984-021-00871-x.
7
The Combined Effects of Adaptive Control and Virtual Reality on Robot-Assisted Fine Hand Motion Rehabilitation in Chronic Stroke Patients: A Case Study.
J Stroke Cerebrovasc Dis. 2018 Jan;27(1):221-228. doi: 10.1016/j.jstrokecerebrovasdis.2017.08.027. Epub 2017 Sep 14.
8
Hand function recovery in chronic stroke with HEXORR robotic training: A case series.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4485-8. doi: 10.1109/IEMBS.2010.5626037.
9
The Arm Movement Detection (AMD) test: a fast robotic test of proprioceptive acuity in the arm.
J Neuroeng Rehabil. 2017 Jun 28;14(1):64. doi: 10.1186/s12984-017-0269-3.

引用本文的文献

1
Evaluation of a passive wearable arm ExoNET.
Front Robot AI. 2024 Jul 10;11:1387177. doi: 10.3389/frobt.2024.1387177. eCollection 2024.
2
Effects of robot viscous forces on arm movements in chronic stroke survivors: a randomized crossover study.
J Neuroeng Rehabil. 2020 Nov 24;17(1):156. doi: 10.1186/s12984-020-00782-3.

本文引用的文献

1
Using noise to shape motor learning.
J Neurophysiol. 2017 Feb 1;117(2):728-737. doi: 10.1152/jn.00493.2016. Epub 2016 Nov 23.
2
Effects of robotically modulating kinematic variability on motor skill learning and motivation.
J Neurophysiol. 2015 Apr 1;113(7):2682-91. doi: 10.1152/jn.00163.2014. Epub 2015 Feb 11.
3
Can stability really predict an impending slip-related fall among older adults?
J Biomech. 2014 Dec 18;47(16):3876-81. doi: 10.1016/j.jbiomech.2014.10.006. Epub 2014 Oct 14.
4
Safety margins in older adults increase with improved control of a dynamic object.
Front Aging Neurosci. 2014 Jul 14;6:158. doi: 10.3389/fnagi.2014.00158. eCollection 2014.
5
Learning a locomotor task: with or without errors?
J Neuroeng Rehabil. 2014 Mar 4;11:25. doi: 10.1186/1743-0003-11-25.
6
Better safe than sorry? The safety margin surrounding the body is increased by anxiety.
J Neurosci. 2013 Aug 28;33(35):14225-30. doi: 10.1523/JNEUROSCI.0706-13.2013.
7
Speeded reaching movements around invisible obstacles.
PLoS Comput Biol. 2012;8(9):e1002676. doi: 10.1371/journal.pcbi.1002676. Epub 2012 Sep 20.
8
Dynamic estimation of task-relevant variance in movement under risk.
J Neurosci. 2012 Sep 12;32(37):12702-11. doi: 10.1523/JNEUROSCI.6160-11.2012.
9
Energy margins in dynamic object manipulation.
J Neurophysiol. 2012 Sep;108(5):1349-65. doi: 10.1152/jn.00019.2012. Epub 2012 May 16.
10
Stabilization strategies for unstable dynamics.
PLoS One. 2012;7(1):e30301. doi: 10.1371/journal.pone.0030301. Epub 2012 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验