Suppr超能文献

利用噪音塑造运动学习。

Using noise to shape motor learning.

作者信息

Thorp Elias B, Kording Konrad P, Mussa-Ivaldi Ferdinando A

机构信息

Department of Biomedical Engineering, Northwestern University, Evanston, Illinois;

Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois.

出版信息

J Neurophysiol. 2017 Feb 1;117(2):728-737. doi: 10.1152/jn.00493.2016. Epub 2016 Nov 23.

Abstract

UNLABELLED

Each of our movements is selected from any number of alternative movements. Some studies have shown evidence that the central nervous system (CNS) chooses to make the specific movements that are least affected by motor noise. Previous results showing that the CNS has a natural tendency to minimize the effects of noise make the direct prediction that if the relationship between movements and noise were to change, the specific movements people learn to make would also change in a predictable manner. Indeed, this has been shown for well-practiced movements such as reaching. Here, we artificially manipulated the relationship between movements and visuomotor noise by adding noise to a motor task in a novel redundant geometry such that there arose a single control policy that minimized the noise. This allowed us to see whether, for a novel motor task, people could learn the specific control policy that minimized noise or would need to employ other compensation strategies to overcome the added noise. As predicted, subjects were able to learn movements that were biased toward the specific ones that minimized the noise, suggesting not only that the CNS can learn to minimize the effects of noise in a novel motor task but also that artificial visuomotor noise can be a useful tool for teaching people to make specific movements. Using noise as a teaching signal promises to be useful for rehabilitative therapies and movement training with human-machine interfaces.

NEW & NOTEWORTHY: Many theories argue that we choose to make the specific movements that minimize motor noise. Here, by changing the relationship between movements and noise, we show that people actively learn to make movements that minimize noise. This not only provides direct evidence for the theories of noise minimization but presents a way to use noise to teach specific movements to improve rehabilitative therapies and human-machine interface control.

摘要

未标注

我们的每一个动作都是从众多可供选择的动作中挑选出来的。一些研究已表明,有证据显示中枢神经系统(CNS)会选择做出受运动噪声影响最小的特定动作。先前的结果表明,中枢神经系统有将噪声影响降至最低的自然倾向,由此可直接推断,如果动作与噪声之间的关系发生变化,人们学会做出的特定动作也会以可预测的方式改变。事实上,对于诸如伸手等熟练动作而言,情况确实如此。在此,我们通过在一种新颖的冗余几何结构的运动任务中添加噪声,人为地操控了动作与视觉运动噪声之间的关系,从而产生了一种使噪声最小化的单一控制策略。这使我们能够观察到,对于一项新颖的运动任务,人们是能够学会使噪声最小化的特定控制策略,还是需要采用其他补偿策略来克服添加的噪声。正如所预测的那样,受试者能够学会偏向于使噪声最小化的特定动作,这不仅表明中枢神经系统能够在一项新颖的运动任务中学会将噪声影响降至最低,还表明人为的视觉运动噪声可以成为教导人们做出特定动作的有用工具。将噪声用作教学信号有望在康复治疗以及人机界面的运动训练中发挥作用。

新进展与值得关注之处

许多理论认为,我们会选择做出使运动噪声最小化的特定动作。在此,通过改变动作与噪声之间的关系,我们表明人们会主动学习做出使噪声最小化的动作。这不仅为噪声最小化理论提供了直接证据,还提出了一种利用噪声来教导特定动作以改善康复治疗和人机界面控制的方法。

相似文献

1
Using noise to shape motor learning.
J Neurophysiol. 2017 Feb 1;117(2):728-737. doi: 10.1152/jn.00493.2016. Epub 2016 Nov 23.
2
Motor learning is optimally tuned to the properties of motor noise.
Neuron. 2009 Aug 13;63(3):406-17. doi: 10.1016/j.neuron.2009.06.025.
3
Motor Performance, Mental Workload and Self-Efficacy Dynamics during Learning of Reaching Movements throughout Multiple Practice Sessions.
Neuroscience. 2019 Dec 15;423:232-248. doi: 10.1016/j.neuroscience.2019.07.001. Epub 2019 Jul 18.
4
Acquisition and generalization of visuomotor transformations by nonhuman primates.
Exp Brain Res. 2005 Feb;161(2):209-19. doi: 10.1007/s00221-004-2061-4. Epub 2004 Oct 5.
5
Consolidation of visuomotor adaptation memory with consistent and noisy environments.
J Neurophysiol. 2017 Jan 1;117(1):316-326. doi: 10.1152/jn.00178.2016. Epub 2016 Oct 26.
6
Task-specific internal models for kinematic transformations.
J Neurophysiol. 2003 Aug;90(2):578-85. doi: 10.1152/jn.01087.2002.
7
Rapid reshaping of human motor generalization.
J Neurosci. 2005 Sep 28;25(39):8948-53. doi: 10.1523/JNEUROSCI.1771-05.2005.
8
Learning by observing: the effect of multiple sessions of action-observation training on the spontaneous movement tempo and motor resonance.
Neuropsychologia. 2017 Feb;96:89-95. doi: 10.1016/j.neuropsychologia.2016.09.022. Epub 2016 Oct 18.
9
Guiding functional reorganization of motor redundancy using a body-machine interface.
J Neuroeng Rehabil. 2020 May 11;17(1):61. doi: 10.1186/s12984-020-00681-7.
10
Visuomotor Learning Generalizes Around the Intended Movement.
eNeuro. 2016 Apr 29;3(2). doi: 10.1523/ENEURO.0005-16.2016. eCollection 2016 Mar-Apr.

引用本文的文献

1
Predictions of bimanual self-touch determine the temporal tuning of somatosensory perception.
iScience. 2024 Dec 19;28(2):111643. doi: 10.1016/j.isci.2024.111643. eCollection 2025 Feb 21.
3
Floating Ball Voice Therapy: Preliminary Effects on Outcomes and Predicting Individual Patient Differences in Generalization.
J Speech Lang Hear Res. 2024 Oct 8;67(10):3521-3535. doi: 10.1044/2024_JSLHR-23-00727. Epub 2024 Sep 25.
4
Designing and Analyzing In-Place Motor Tasks in Virtual Reality With Goal Functions.
IEEE Trans Neural Syst Rehabil Eng. 2024;32:2928-2938. doi: 10.1109/TNSRE.2024.3439500. Epub 2024 Aug 16.
5
Interaction between decision-making and motor learning when selecting reach targets in the presence of bias and noise.
PLoS Comput Biol. 2023 Nov 2;19(11):e1011596. doi: 10.1371/journal.pcbi.1011596. eCollection 2023 Nov.
7
A Hessian-based decomposition characterizes how performance in complex motor skills depends on individual strategy and variability.
PLoS One. 2021 Jun 30;16(6):e0253626. doi: 10.1371/journal.pone.0253626. eCollection 2021.
8
A Framework for Optimizing Co-adaptation in Body-Machine Interfaces.
Front Neurorobot. 2021 Apr 21;15:662181. doi: 10.3389/fnbot.2021.662181. eCollection 2021.
9
A tale of too many tasks: task fragmentation in motor learning and a call for model task paradigms.
Exp Brain Res. 2021 Jan;239(1):1-19. doi: 10.1007/s00221-020-05908-6. Epub 2020 Nov 10.
10
Exploring disturbance as a force for good in motor learning.
PLoS One. 2020 May 20;15(5):e0224055. doi: 10.1371/journal.pone.0224055. eCollection 2020.

本文引用的文献

1
Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.
PLoS Comput Biol. 2016 Apr 1;12(4):e1004861. doi: 10.1371/journal.pcbi.1004861. eCollection 2016 Apr.
2
Neural Control Adaptation to Motor Noise Manipulation.
Front Hum Neurosci. 2016 Mar 1;10:59. doi: 10.3389/fnhum.2016.00059. eCollection 2016.
3
Remapping residual coordination for controlling assistive devices and recovering motor functions.
Neuropsychologia. 2015 Dec;79(Pt B):364-76. doi: 10.1016/j.neuropsychologia.2015.08.024. Epub 2015 Sep 2.
4
Upper Body-Based Power Wheelchair Control Interface for Individuals With Tetraplegia.
IEEE Trans Neural Syst Rehabil Eng. 2016 Feb;24(2):249-60. doi: 10.1109/TNSRE.2015.2439240. Epub 2015 Jun 1.
5
The dissociable effects of punishment and reward on motor learning.
Nat Neurosci. 2015 Apr;18(4):597-602. doi: 10.1038/nn.3956. Epub 2015 Feb 23.
6
A body machine interface based on inertial sensors.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6120-4. doi: 10.1109/EMBC.2014.6945026.
7
Rhythmic manipulation of objects with complex dynamics: predictability over chaos.
PLoS Comput Biol. 2014 Oct 23;10(10):e1003900. doi: 10.1371/journal.pcbi.1003900. eCollection 2014 Oct.
8
Acquisition of novel and complex motor skills: stable solutions where intrinsic noise matters less.
Adv Exp Med Biol. 2014;826:101-24. doi: 10.1007/978-1-4939-1338-1_8.
9
When money is not enough: awareness, success, and variability in motor learning.
PLoS One. 2014 Jan 28;9(1):e86580. doi: 10.1371/journal.pone.0086580. eCollection 2014.
10
Optimal control of reaching includes kinematic constraints.
J Neurophysiol. 2013 Jul;110(1):1-11. doi: 10.1152/jn.00794.2011. Epub 2013 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验