Suppr超能文献

用于半监督分类的增强流形正则化

Enhanced manifold regularization for semi-supervised classification.

作者信息

Gan Haitao, Luo Zhizeng, Fan Yingle, Sang Nong

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2016 Jun 1;33(6):1207-13. doi: 10.1364/JOSAA.33.001207.

Abstract

Manifold regularization (MR) has become one of the most widely used approaches in the semi-supervised learning field. It has shown superiority by exploiting the local manifold structure of both labeled and unlabeled data. The manifold structure is modeled by constructing a Laplacian graph and then incorporated in learning through a smoothness regularization term. Hence the labels of labeled and unlabeled data vary smoothly along the geodesics on the manifold. However, MR has ignored the discriminative ability of the labeled and unlabeled data. To address the problem, we propose an enhanced MR framework for semi-supervised classification in which the local discriminative information of the labeled and unlabeled data is explicitly exploited. To make full use of labeled data, we firstly employ a semi-supervised clustering method to discover the underlying data space structure of the whole dataset. Then we construct a local discrimination graph to model the discriminative information of labeled and unlabeled data according to the discovered intrinsic structure. Therefore, the data points that may be from different clusters, though similar on the manifold, are enforced far away from each other. Finally, the discrimination graph is incorporated into the MR framework. In particular, we utilize semi-supervised fuzzy c-means and Laplacian regularized Kernel minimum squared error for semi-supervised clustering and classification, respectively. Experimental results on several benchmark datasets and face recognition demonstrate the effectiveness of our proposed method.

摘要

流形正则化(MR)已成为半监督学习领域中使用最广泛的方法之一。通过利用有标签和无标签数据的局部流形结构,它展现出了优越性。通过构建拉普拉斯图对流形结构进行建模,然后通过一个平滑正则化项将其纳入学习过程。这样,有标签和无标签数据的标签在流形上沿着测地线平滑变化。然而,MR忽略了有标签和无标签数据的判别能力。为了解决这个问题,我们提出了一种用于半监督分类的增强型MR框架,其中明确利用了有标签和无标签数据的局部判别信息。为了充分利用有标签数据,我们首先采用一种半监督聚类方法来发现整个数据集的潜在数据空间结构。然后,根据发现的内在结构,我们构建一个局部判别图来对有标签和无标签数据的判别信息进行建模。因此,那些可能来自不同聚类、尽管在流形上相似的数据点会被强制相互远离。最后,将判别图纳入MR框架中,并分别利用半监督模糊c均值和拉普拉斯正则化核最小均方误差进行半监督聚类和分类。在几个基准数据集上的实验结果和人脸识别实验证明了我们所提方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验