Suppr超能文献

通过联合字典学习实现可重构非线性降维

Reconstructible Nonlinear Dimensionality Reduction via Joint Dictionary Learning.

作者信息

Wei Xian, Shen Hao, Li Yuanxiang, Tang Xuan, Wang Fengxiang, Kleinsteuber Martin, Murphey Yi Lu

出版信息

IEEE Trans Neural Netw Learn Syst. 2019 Jan;30(1):175-189. doi: 10.1007/978-3-319-22482-4_32. Epub 2018 Jun 5.

Abstract

This paper presents a parametric low-dimensional (LD) representation learning method that allows to reconstruct high-dimensional (HD) input vectors in an unsupervised manner. Under the assumption that the HD data and its LD representation share the same or similar local sparse structure, the proposed method achieves reconstructible dimensionality reduction via jointly learning dictionaries in both the original HD data space and its LD representation space. By regarding the sparse representation as a smooth function with respect to a specific dictionary, we construct an encoding-decoding block for learning LD representations from sparse coefficients of HD data. It is expected that this learning process preserves the desirable structure of HD data in the LD representation space, and simultaneously allows a reliable reconstruction from the LD space back to the original HD space. In addition, the proposed single layer encoding-decoding block can be easily extended to deep learning structures. Numerical experiments on both synthetic data sets and real images show that the proposed method achieves strongly competitive and robust performance in data DR, reconstruction, and synthesis, even on heavily corrupted data. The proposed method can be used as an alternative approach to compressive sensing (CS); however, it can outperform the traditional CS methods in: 1) task-driven learning problems, such as 2-D/3-D data visualization, and 2) data reconstruction at a lower dimensional space.

摘要

本文提出了一种参数化低维(LD)表示学习方法,该方法能够以无监督方式重构高维(HD)输入向量。在高维数据及其低维表示共享相同或相似局部稀疏结构的假设下,所提出的方法通过在原始高维数据空间及其低维表示空间中联合学习字典来实现可重构降维。通过将稀疏表示视为关于特定字典的光滑函数,我们构建了一个编码 - 解码模块,用于从高维数据的稀疏系数中学习低维表示。期望该学习过程在低维表示空间中保留高维数据的理想结构,同时允许从低维空间可靠地重构回原始高维空间。此外,所提出的单层编码 - 解码模块可以很容易地扩展到深度学习结构。在合成数据集和真实图像上的数值实验表明,所提出的方法在数据降维、重构和合成方面,即使在严重损坏的数据上也能实现极具竞争力和稳健的性能。所提出的方法可以用作压缩感知(CS)的替代方法;然而,它在以下方面可以优于传统的CS方法:1)任务驱动的学习问题,如二维/三维数据可视化,以及2)在较低维空间中的数据重构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验