Suppr超能文献

基于神经和临床特征的二元分类:基于似然的决策水平融合在纤维肌痛中的应用。

Binary Classification Using Neural and Clinical Features: An Application in Fibromyalgia With Likelihood-Based Decision Level Fusion.

出版信息

IEEE J Biomed Health Inform. 2019 Jul;23(4):1490-1498. doi: 10.1109/JBHI.2018.2844300. Epub 2018 Jun 5.

Abstract

Among several features used for clinical binary classification, behavioral performance, questionnaire scores, test results, and physical exam reports can be counted. Attempts to include neuroimaging findings to support clinical diagnosis are scarce due to difficulties in collecting such data, as well as problems in integration of neuroimaging findings with other features. The binary classification method proposed here aims to merge small samples from multiple sites so that a large cohort, which better describes the features of the disease can be built. We implemented a simple and robust framework for detection of fibromyalgia, using likelihood during decision level fusion. This framework supports sharing of classifier applications across clinical sites and arrives at a decision by fusing results from multiple classifiers. If there are missing opinions from some classifiers due to inability to collect their input features, such degradation in information is tolerated. We implemented this method using functional near infrared spectroscopy (fNIRS) data collected from fibromyalgia patients across three different tasks. Functional connectivity maps are derived from these tasks as features. In addition, self-reported clinical features are also used. Five classifiers are trained using k nearest neighborhood (kNN), linear discriminant analysis (LDA), and support vector machine (SVM). Fusion of classification opinions from multiple classifiers based on likelihood ratios outperformed individual classifier performances. When 2, 3, 4, and 5 different classifiers are fused, sensitivity, and specificity figures of 100% could be obtained based on the choice of the classifier set.

摘要

在用于临床二分类的几种特征中,行为表现、问卷评分、测试结果和体格检查报告都可以被计算在内。由于难以收集此类数据以及神经影像学发现与其他特征的整合问题,尝试将神经影像学发现纳入临床诊断的情况很少。这里提出的二分类方法旨在合并来自多个站点的小样本,以便构建更好地描述疾病特征的大队列。我们使用决策级融合期间的似然度实现了一种简单而强大的纤维肌痛检测框架。该框架支持在临床站点之间共享分类器应用程序,并通过融合来自多个分类器的结果做出决策。如果由于无法收集其输入特征而导致某些分类器的意见缺失,则可以容忍这种信息的降级。我们使用从三个不同任务中收集的纤维肌痛患者的功能近红外光谱 (fNIRS) 数据实现了这种方法。这些任务的功能连接图作为特征衍生出来。此外,还使用了自我报告的临床特征。使用 k 最近邻 (kNN)、线性判别分析 (LDA) 和支持向量机 (SVM) 训练了五个分类器。基于似然比融合来自多个分类器的分类意见优于单个分类器性能。当融合 2、3、4 和 5 个不同的分类器时,可以根据分类器集的选择获得 100%的灵敏度和特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验