Nijman Steven W J, Hoogland Jeroen, Groenhof T Katrien J, Brandjes Menno, Jacobs John J L, Bots Michiel L, Asselbergs Folkert W, Moons Karel G M, Debray Thomas P A
Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
Department of Health, Ortec B.V., Zoetermeer, Houtsingel 5, 2719 EA Zoetermeer, The Netherlands.
Eur Heart J Digit Health. 2020 Dec 19;2(1):154-164. doi: 10.1093/ehjdh/ztaa016. eCollection 2021 Mar.
Use of prediction models is widely recommended by clinical guidelines, but usually requires complete information on all predictors, which is not always available in daily practice. We aim to describe two methods for real-time handling of missing predictor values when using prediction models in practice.
We compare the widely used method of mean imputation (M-imp) to a method that personalizes the imputations by taking advantage of the observed patient characteristics. These characteristics may include both prediction model variables and other characteristics (auxiliary variables). The method was implemented using imputation from a joint multivariate normal model of the patient characteristics (joint modelling imputation; JMI). Data from two different cardiovascular cohorts with cardiovascular predictors and outcome were used to evaluate the real-time imputation methods. We quantified the prediction model's overall performance [mean squared error (MSE) of linear predictor], discrimination (c-index), calibration (intercept and slope), and net benefit (decision curve analysis). When compared with mean imputation, JMI substantially improved the MSE (0.10 vs. 0.13), c-index (0.70 vs. 0.68), and calibration (calibration-in-the-large: 0.04 vs. 0.06; calibration slope: 1.01 vs. 0.92), especially when incorporating auxiliary variables. When the imputation method was based on an external cohort, calibration deteriorated, but discrimination remained similar.
We recommend JMI with auxiliary variables for real-time imputation of missing values, and to update imputation models when implementing them in new settings or (sub)populations.
临床指南广泛推荐使用预测模型,但通常需要所有预测变量的完整信息,而这在日常实践中并非总能获得。我们旨在描述在实践中使用预测模型时实时处理缺失预测变量值的两种方法。
我们将广泛使用的均值插补法(M-imp)与一种通过利用观察到的患者特征进行个性化插补的方法进行比较。这些特征可能包括预测模型变量和其他特征(辅助变量)。该方法通过从患者特征的联合多元正态模型进行插补来实现(联合建模插补;JMI)。来自两个具有心血管预测变量和结局的不同心血管队列的数据用于评估实时插补方法。我们量化了预测模型的整体性能[线性预测器的均方误差(MSE)]、区分度(c指数)、校准(截距和斜率)以及净效益(决策曲线分析)。与均值插补相比,JMI显著改善了MSE(0.10对0.13)、c指数(0.70对0.68)和校准(大样本校准:0.04对0.06;校准斜率:1.01对0.92),尤其是在纳入辅助变量时。当插补方法基于外部队列时,校准变差,但区分度保持相似。
我们推荐使用带有辅助变量的JMI进行缺失值的实时插补,并在新的环境或(亚)人群中实施时更新插补模型。