Huang Ruisen, Hong Keum-Shik, Bao Shi-Chun, Gao Fei
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
Institute of Future, Qingdao University, Qingdao, Shandong, China.
Front Neurosci. 2024 Aug 6;18:1432138. doi: 10.3389/fnins.2024.1432138. eCollection 2024.
Removing motion artifacts (MAs) from functional near-infrared spectroscopy (fNIRS) signals is crucial in practical applications, but a standard procedure is not available yet. Artificial neural networks have found applications in diverse domains, such as voice and image processing, while their utility in signal processing remains limited.
In this work, we introduce an innovative neural network-based approach for online fNIRS signals processing, tailored to individual subjects and requiring minimal prior experimental data. Specifically, this approach employs one-dimensional convolutional neural networks with a penalty network (1DCNNwP), incorporating a moving window and an input data augmentation procedure. In the training process, the neural network is fed with simulated data derived from the balloon model for simulation validation and semi-simulated data for experimental validation, respectively.
Visual validation underscores 1DCNNwP's capacity to effectively suppress MAs. Quantitative analysis reveals a remarkable improvement in signal-to-noise ratio by over 11.08 dB, surpassing the existing methods, including the spline-interpolation, wavelet-based, temporal derivative distribution repair with a 1 s moving window, and spline Savitzky-Goaly methods. Contrast-to-noise ratio (CNR) analysis further demonstrated 1DCNNwP's ability to restore or enhance CNRs for motionless signals. In the experiments of eight subjects, our method significantly outperformed the other approaches (except offline TDDR, < -3.82, < 0.01). With an average signal processing time of 0.53 ms per sample, 1DCNNwP exhibited strong potential for real-time fNIRS data processing.
This novel univariate approach for fNIRS signal processing presents a promising avenue that requires minimal prior experimental data and adapts seamlessly to varying experimental paradigms.
从功能近红外光谱(fNIRS)信号中去除运动伪影(MA)在实际应用中至关重要,但目前尚无标准程序。人工神经网络已在语音和图像处理等多个领域得到应用,但其在信号处理中的效用仍然有限。
在这项工作中,我们引入了一种创新的基于神经网络的在线fNIRS信号处理方法,该方法针对个体受试者量身定制,且所需的先验实验数据最少。具体而言,此方法采用带有惩罚网络的一维卷积神经网络(1DCNNwP),结合移动窗口和输入数据增强程序。在训练过程中,神经网络分别被输入从气球模型导出的模拟数据用于模拟验证,以及半模拟数据用于实验验证。
视觉验证强调了1DCNNwP有效抑制运动伪影的能力。定量分析表明,信噪比显著提高超过11.08 dB,超过了现有方法,包括样条插值、基于小波的方法、使用1秒移动窗口的时间导数分布修复方法以及样条萨维茨基 - 戈利方法。对比噪声比(CNR)分析进一步证明了1DCNNwP恢复或增强静止信号CNR的能力。在八名受试者的实验中,我们的方法显著优于其他方法(离线TDDR除外, < -3.82, < -0.01)。1DCNNwP平均每个样本的信号处理时间为0.53毫秒,在实时fNIRS数据处理方面展现出强大潜力。
这种用于fNIRS信号处理的新型单变量方法提供了一条有前景的途径,它所需的先验实验数据最少,并能无缝适应不同的实验范式。