Cambay Veysel Yusuf, Hafeez Baig Abdul, Aydemir Emrah, Tuncer Turker, Dogan Sengul
Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig 23119, Turkey.
Department of Electrical and Electronics Engineering, Faculty of Engineering and Architecture, Mus Alparslan University, Mus 49250, Turkey.
Diagnostics (Basel). 2024 Nov 30;14(23):2708. doi: 10.3390/diagnostics14232708.
The primary objective of this research is to propose a new, simple, and effective feature extraction function and to investigate its classification ability using electrocardiogram (ECG) signals.
In this research, we present a new and simple feature extraction function named the minimum and maximum pattern (MinMaxPat). In the proposed MinMaxPat, the signal is divided into overlapping blocks with a length of 16, and the indexes of the minimum and maximum values are identified. Then, using the computed indices, a feature map is calculated in base 16, and the histogram of the generated map is extracted to obtain the feature vector. The length of the generated feature vector is 256. To evaluate the classification ability of this feature extraction function, we present a new feature engineering model with three main phases: (i) feature extraction using MinMaxPat, (ii) cumulative weight-based iterative neighborhood component analysis (CWINCA)-based feature selection, and (iii) classification using a t-algorithm-based k-nearest neighbors (tkNN) classifier.
To obtain results, we applied the proposed MinMaxPat-based feature engineering model to a publicly available ECG fibromyalgia dataset. Using this dataset, three cases were analyzed, and the proposed MinMaxPat-based model achieved over 80% classification accuracy with both leave-one-record-out (LORO) cross-validation (CV) and 10-fold CV.
These results clearly demonstrate that this simple model achieved high classification performance. Therefore, this model is surprisingly effective for ECG signal classification.
本研究的主要目的是提出一种新的、简单且有效的特征提取函数,并使用心电图(ECG)信号研究其分类能力。
在本研究中,我们提出了一种名为最小和最大模式(MinMaxPat)的新的简单特征提取函数。在所提出的MinMaxPat中,信号被划分为长度为16的重叠块,并识别最小值和最大值的索引。然后,使用计算出的索引,以十六进制计算特征图,并提取生成图的直方图以获得特征向量。生成的特征向量长度为256。为了评估此特征提取函数的分类能力,我们提出了一个具有三个主要阶段的新特征工程模型:(i)使用MinMaxPat进行特征提取,(ii)基于累积权重的迭代邻域成分分析(CWINCA)的特征选择,以及(iii)使用基于t算法的k近邻(tkNN)分类器进行分类。
为了获得结果,我们将所提出的基于MinMaxPat的特征工程模型应用于一个公开可用的ECG纤维肌痛数据集。使用该数据集分析了三个案例,所提出的基于MinMaxPat的模型在留一记录法(LORO)交叉验证(CV)和10折CV中均实现了超过80%的分类准确率。
这些结果清楚地表明,这个简单的模型实现了高分类性能。因此,该模型在ECG信号分类方面出奇地有效。