Suppr超能文献

单幅图像的混合人脸反射率、光照和形状。

Hybrid Face Reflectance, Illumination, and Shape From a Single Image.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):5002-5015. doi: 10.1109/TPAMI.2021.3080586. Epub 2022 Aug 4.

Abstract

We propose HyFRIS-Net to jointly estimate the hybrid reflectance and illumination models, as well as the refined face shape from a single unconstrained face image in a pre-defined texture space. The proposed hybrid reflectance and illumination representation ensure photometric face appearance modeling in both parametric and non-parametric spaces for efficient learning. While forcing the reflectance consistency constraint for the same person and face identity constraint for different persons, our approach recovers an occlusion-free face albedo with disambiguated color from the illumination color. Our network is trained in a self-evolving manner to achieve general applicability on real-world data. We conduct comprehensive qualitative and quantitative evaluations with state-of-the-art methods to demonstrate the advantages of HyFRIS-Net in modeling photo-realistic face albedo, illumination, and shape.

摘要

我们提出了 HyFRIS-Net,旨在从预定义纹理空间中的单个无约束人脸图像中联合估计混合反射率和光照模型,以及细化的人脸形状。所提出的混合反射率和光照表示方法确保了参数化和非参数化空间中的光度人脸外观建模,以实现高效学习。在为同一人强制反射率一致性约束和为不同人强制人脸身份约束的同时,我们的方法从光照颜色中恢复出具有可区分颜色的无遮挡人脸反射率。我们的网络以自进化的方式进行训练,以实现对真实世界数据的通用适用性。我们使用最先进的方法进行了全面的定性和定量评估,以展示 HyFRIS-Net 在建模逼真人脸反射率、光照和形状方面的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验