Suppr超能文献

二元多视图聚类

Binary Multi-View Clustering.

作者信息

Zhang Zheng, Liu Li, Shen Fumin, Shen Heng Tao, Shao Ling

出版信息

IEEE Trans Pattern Anal Mach Intell. 2019 Jul;41(7):1774-1782. doi: 10.1109/TPAMI.2018.2847335. Epub 2018 Jun 18.

Abstract

Clustering is a long-standing important research problem, however, remains challenging when handling large-scale image data from diverse sources. In this paper, we present a novel Binary Multi-View Clustering (BMVC) framework, which can dexterously manipulate multi-view image data and easily scale to large data. To achieve this goal, we formulate BMVC by two key components: compact collaborative discrete representation learning and binary clustering structure learning, in a joint learning framework. Specifically, BMVC collaboratively encodes the multi-view image descriptors into a compact common binary code space by considering their complementary information; the collaborative binary representations are meanwhile clustered by a binary matrix factorization model, such that the cluster structures are optimized in the Hamming space by pure, extremely fast bit-operations. For efficiency, the code balance constraints are imposed on both binary data representations and cluster centroids. Finally, the resulting optimization problem is solved by an alternating optimization scheme with guaranteed fast convergence. Extensive experiments on four large-scale multi-view image datasets demonstrate that the proposed method enjoys the significant reduction in both computation and memory footprint, while observing superior (in most cases) or very competitive performance, in comparison with state-of-the-art clustering methods.

摘要

聚类是一个长期存在的重要研究问题,然而,在处理来自不同来源的大规模图像数据时仍然具有挑战性。在本文中,我们提出了一种新颖的二元多视图聚类(BMVC)框架,它可以灵活地处理多视图图像数据并轻松扩展到大数据。为了实现这一目标,我们在联合学习框架中通过两个关键组件来构建BMVC:紧凑协作离散表示学习和二元聚类结构学习。具体而言,BMVC通过考虑多视图图像描述符的互补信息,将它们协作编码到一个紧凑的公共二元码空间中;同时,通过二元矩阵分解模型对协作二元表示进行聚类,使得聚类结构在汉明空间中通过纯粹的、极快的位运算进行优化。为了提高效率,对二元数据表示和聚类中心都施加了码平衡约束。最后,通过具有保证快速收敛的交替优化方案来解决由此产生的优化问题。在四个大规模多视图图像数据集上进行的大量实验表明,与现有聚类方法相比,所提出的方法在计算和内存占用方面都有显著减少,同时具有卓越的(在大多数情况下)或非常有竞争力的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验