Suppr超能文献

稀疏区间约束学习及其在医学图像分级中的应用。

Sparse Range-Constrained Learning and Its Application for Medical Image Grading.

出版信息

IEEE Trans Med Imaging. 2018 Dec;37(12):2729-2738. doi: 10.1109/TMI.2018.2851607. Epub 2018 Jun 29.

Abstract

Sparse learning has been shown to be effective in solving many real-world problems. Finding sparse representations is a fundamentally important topic in many fields of science including signal processing, computer vision, genome study, and medical imaging. One important issue in applying sparse representation is to find the basis to represent the data, especially in computer vision and medical imaging where the data are not necessary incoherent. In medical imaging, clinicians often grade the severity or measure the risk score of a disease based on images. This process is referred to as medical image grading. Manual grading of the disease severity or risk score is often used. However, it is tedious, subjective, and expensive. Sparse learning has been used for automatic grading of medical images for different diseases. In the grading, we usually begin with one step to find a sparse representation of the testing image using a set of reference images or atoms from the dictionary. Then in the second step, the selected atoms are used as references to compute the grades of the testing images. Since the two steps are conducted sequentially, the objective function in the first step is not necessarily optimized for the second step. In this paper, we propose a novel sparse range-constrained learning (SRCL) algorithm for medical image grading. Different from most of existing sparse learning algorithms, SRCL integrates the objective of finding a sparse representation and that of grading the image into one function. It aims to find a sparse representation of the testing image based on atoms that are most similar in both the data or feature representation and the medical grading scores. We apply the new proposed SRCL to two different applications, namely, cup-to-disc ratio (CDR) computation from retinal fundus images and cataract grading from slit-lamp lens images. Experimental results show that the proposed method is able to improve the accuracy in CDR computation and cataract grading.

摘要

稀疏学习在解决许多现实世界的问题方面已经被证明是有效的。寻找稀疏表示是信号处理、计算机视觉、基因组研究和医学成像等许多科学领域的一个基本重要的主题。在应用稀疏表示时,一个重要的问题是找到表示数据的基础,特别是在计算机视觉和医学成像中,数据不一定是不连贯的。在医学成像中,临床医生通常根据图像来评估疾病的严重程度或测量疾病的风险评分。这个过程被称为医学图像分级。手动分级疾病的严重程度或风险评分通常被使用。然而,它是繁琐的、主观的和昂贵的。稀疏学习已经被用于不同疾病的医学图像的自动分级。在分级中,我们通常首先使用一步,使用一组参考图像或字典中的原子来寻找测试图像的稀疏表示。然后在第二步中,选择的原子被用作参考来计算测试图像的等级。由于两步是顺序进行的,所以第一步中的目标函数不一定是针对第二步进行优化的。在本文中,我们提出了一种新颖的基于稀疏范围约束的学习(SRCL)算法,用于医学图像分级。与大多数现有的稀疏学习算法不同,SRCL 将寻找稀疏表示的目标和对图像进行分级的目标集成到一个函数中。它旨在根据在数据或特征表示以及医学分级评分中最相似的原子,找到测试图像的稀疏表示。我们将新提出的 SRCL 应用于两个不同的应用,即从视网膜眼底图像计算杯盘比(CDR)和从裂隙灯镜头图像计算白内障分级。实验结果表明,所提出的方法能够提高 CDR 计算和白内障分级的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验