Suppr超能文献

通过半监督学习进行青光眼筛查的直接杯盘比估计

Direct Cup-to-Disc Ratio Estimation for Glaucoma Screening via Semi-Supervised Learning.

作者信息

Zhao Rongchang, Chen Xuanlin, Liu Xiyao, Chen Zailiang, Guo Fan, Li Shuo

出版信息

IEEE J Biomed Health Inform. 2020 Apr;24(4):1104-1113. doi: 10.1109/JBHI.2019.2934477. Epub 2019 Aug 12.

Abstract

Glaucoma is a chronic eye disease that leads to irreversible vision loss. The Cup-to-Disc Ratio (CDR) serves as the most important indicator for glaucoma screening and plays a significant role in clinical screening and early diagnosis of glaucoma. In general, obtaining CDR is subjected to measuring on manually or automatically segmented optic disc and cup. Despite great efforts have been devoted, obtaining CDR values automatically with high accuracy and robustness is still a great challenge due to the heavy overlap between optic cup and neuroretinal rim regions. In this paper, a direct CDR estimation method is proposed based on the well-designed semi-supervised learning scheme, in which CDR estimation is formulated as a general regression problem while optic disc/cup segmentation is cancelled. The method directly regresses CDR value based on the feature representation of optic nerve head via deep learning technique while bypassing intermediate segmentation. The scheme is a two-stage cascaded approach comprised of two phases: unsupervised feature representation of fundus image with a convolutional neural networks (MFPPNet) and CDR value regression by random forest regressor. The proposed scheme is validated on the challenging glaucoma dataset Direct-CSU and public ORIGA, and the experimental results demonstrate that our method can achieve a lower average CDR error of 0.0563 and a higher correlation of around 0.726 with measurement before manual segmentation of optic disc/cup by human experts. Our estimated CDR values are also tested for glaucoma screening, which achieves the areas under curve of 0.905 on dataset of 421 fundus images. The experiments show that the proposed method is capable of state-of-the-art CDR estimation and satisfactory glaucoma screening with calculated CDR value.

摘要

青光眼是一种导致不可逆视力丧失的慢性眼病。杯盘比(CDR)是青光眼筛查的最重要指标,在青光眼的临床筛查和早期诊断中起着重要作用。一般来说,获取CDR需要对视盘和视杯进行手动或自动分割测量。尽管已经付出了巨大努力,但由于视杯和神经视网膜边缘区域之间的严重重叠,高精度、鲁棒地自动获取CDR值仍然是一个巨大挑战。本文提出了一种基于精心设计的半监督学习方案的直接CDR估计方法,该方法将CDR估计公式化为一个通用回归问题,同时取消了视盘/视杯分割。该方法通过深度学习技术直接基于视神经乳头的特征表示回归CDR值,绕过中间分割过程。该方案是一种两阶段级联方法,由两个阶段组成:使用卷积神经网络(MFPPNet)对眼底图像进行无监督特征表示,以及使用随机森林回归器进行CDR值回归。所提出的方案在具有挑战性的青光眼数据集Direct-CSU和公共数据集ORIGA上得到验证,实验结果表明,我们的方法能够实现平均CDR误差低至0.0563,与人类专家对视盘/视杯进行手动分割前的测量结果的相关性高达约0.726。我们估计的CDR值也用于青光眼筛查,在421张眼底图像的数据集上实现了0.905的曲线下面积。实验表明,所提出的方法能够进行最先进的CDR估计,并通过计算得到的CDR值进行令人满意的青光眼筛查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验