College of Computer Science, Shenyang Aerospace University, Shenyang, Liaoning, China.
School of Software, Jiangxi Normal University, Nanchang, Jiangxi, China.
Med Biol Eng Comput. 2019 Sep;57(9):2055-2067. doi: 10.1007/s11517-019-02011-z. Epub 2019 Jul 27.
Glaucoma is a sight-threading disease which can lead to irreversible blindness. Currently, extracting the vertical cup-to-disc ratio (CDR) from 2D retinal fundus images is promising for automatic glaucoma diagnosis. In this paper, we present a novel sparse coding approach for glaucoma diagnosis called adaptive weighted locality-constrained sparse coding (AWLCSC). Different from the existing reconstruction-based glaucoma diagnosis approaches, the weighted matrix in AWLCSC is constructed by adaptively fusing multiple distance measurement information between the reference images and the testing image, making our approach more robust and effective to glaucoma diagnosis. In our approach, the disc image is firstly extracted and reconstructed according to the proposed AWLCSC technique. Then, with the usage of the obtained reconstruction coefficients and a series of reference disc images with known CDRs, the CDR of the testing disc image can be automated estimation for glaucoma diagnosis. The performance of the proposed AWLCSC is evaluated on two publicly available DRISHTI-GS1 and RIM-ONE r2 databases. The experimental results indicate that the proposed approach outperforms the state-of-the-art approaches. Graphical abstract The flowchart of the proposed approach for glaucoma diagnosis.
青光眼是一种致盲性眼病,目前,从二维眼底图像中提取垂直杯盘比(CDR)对于自动青光眼诊断具有广阔的应用前景。本文提出了一种新颖的基于稀疏编码的青光眼诊断方法,称为自适应加权局部约束稀疏编码(AWLCSC)。与现有的基于重建的青光眼诊断方法不同,AWLCSC 中的加权矩阵是通过自适应融合参考图像和测试图像之间的多种距离度量信息来构建的,使得我们的方法在青光眼诊断中更加稳健和有效。在我们的方法中,首先根据提出的 AWLCSC 技术提取和重建视盘图像。然后,利用获得的重建系数和一系列具有已知 CDR 的参考视盘图像,可以自动估计测试视盘图像的 CDR,从而进行青光眼诊断。在两个公开的 DRISHTI-GS1 和 RIM-ONE r2 数据库上评估了所提出的 AWLCSC 的性能。实验结果表明,该方法优于现有的先进方法。