IEEE Trans Med Imaging. 2018 Oct;37(10):2196-2210. doi: 10.1109/TMI.2018.2837002. Epub 2018 May 15.
This paper proposes a novel methodology for automatic detection and localization of gastrointestinal (GI) anomalies in endoscopic video frame sequences. Training is performed with weakly annotated images, using only image-level, semantic labels instead of detailed, and pixel-level annotations. This makes it a cost-effective approach for the analysis of large videoendoscopy repositories. Other advantages of the proposed methodology include its capability to suggest possible locations of GI anomalies within the video frames, and its generality, in the sense that abnormal frame detection is based on automatically derived image features. It is implemented in three phases: 1) it classifies the video frames into abnormal or normal using a weakly supervised convolutional neural network (WCNN) architecture; 2) detects salient points from deeper WCNN layers, using a deep saliency detection algorithm; and 3) localizes GI anomalies using an iterative cluster unification (ICU) algorithm. ICU is based on a pointwise cross-feature-map (PCFM) descriptor extracted locally from the detected salient points using information derived from the WCNN. Results, from extensive experimentation using publicly available collections of gastrointestinal endoscopy video frames, are presented. The data sets used include a variety of GI anomalies. Both anomaly detection and localization performance achieved, in terms of the area under receiver operating characteristic (AUC), were >80%. The highest AUC for anomaly detection was obtained on conventional gastroscopy images, reaching 96%, and the highest AUC for anomaly localization was obtained on wireless capsule endoscopy images, reaching 88%.
本文提出了一种新的方法,用于自动检测和定位内窥镜视频帧序列中的胃肠道(GI)异常。训练是使用弱标注图像进行的,仅使用图像级别的语义标签,而不是详细的像素级标注。这使得它成为分析大型视频内窥镜存储库的一种具有成本效益的方法。该方法的其他优点包括能够在视频帧内建议 GI 异常的可能位置,以及其通用性,即异常帧检测是基于自动提取的图像特征。它分三个阶段实现:1)使用弱监督卷积神经网络(WCNN)架构将视频帧分类为异常或正常;2)使用深度显著性检测算法从更深的 WCNN 层中检测显著点;3)使用迭代聚类统一(ICU)算法定位 GI 异常。ICU 基于从检测到的显著点本地提取的点交叉特征图(PCFM)描述符,使用从 WCNN 中提取的信息进行局部化。使用公开的胃肠道内窥镜视频帧集合进行了广泛的实验,展示了结果。使用的数据集包括各种 GI 异常。在接收者操作特征(AUC)方面,无论是异常检测还是本地化性能,都达到了>80%。在常规胃镜图像上获得的最高 AUC 用于异常检测,达到 96%,在无线胶囊内窥镜图像上获得的最高 AUC 用于异常定位,达到 88%。