Suppr超能文献

用于胃癌前病变诊断的胃部切片相关网络

Gastric Section Correlation Network for Gastric Precancerous Lesion Diagnosis.

作者信息

Jhang Jyun-Yao, Tsai Yu-Ching, Hsu Tzu-Chun, Huang Chun-Rong, Cheng Hsiu-Chi, Sheu Bor-Shyang

机构信息

Department of Computer Science and EngineeringNational Chung Hsing University Taichung 402 Taiwan.

Department of Internal MedicineTainan Hospital, Ministry of Health and Welfare Tainan 701 Taiwan.

出版信息

IEEE Open J Eng Med Biol. 2023 May 17;5:434-442. doi: 10.1109/OJEMB.2023.3277219. eCollection 2024.

Abstract

Diagnosing the corpus-predominant gastritis index (CGI) which is an early precancerous lesion in the stomach has been shown its effectiveness in identifying high gastric cancer risk patients for preventive healthcare. However, invasive biopsies and time-consuming pathological analysis are required for the CGI diagnosis. We propose a novel gastric section correlation network (GSCNet) for the CGI diagnosis from endoscopic images of three dominant gastric sections, the antrum, body and cardia. The proposed network consists of two dominant modules including the scaling feature fusion module and section correlation module. The front one aims to extract scaling fusion features which can effectively represent the mucosa under variant viewing angles and scale changes for each gastric section. The latter one aims to apply the medical prior knowledge with three section correlation losses to model the correlations of different gastric sections for the CGI diagnosis. The proposed method outperforms competing deep learning methods and achieves high testing accuracy, sensitivity, and specificity of 0.957, 0.938 and 0.962, respectively. The proposed method is the first method to identify high gastric cancer risk patients with CGI from endoscopic images without invasive biopsies and time-consuming pathological analysis.

摘要

诊断胃体为主型胃炎指数(CGI),这是一种胃部早期癌前病变,已证明其在识别胃癌高风险患者以进行预防性医疗保健方面的有效性。然而,CGI诊断需要进行侵入性活检和耗时的病理分析。我们提出了一种新颖的胃部分关联网络(GSCNet),用于从胃的三个主要部分(胃窦、胃体和贲门)的内镜图像中诊断CGI。所提出的网络由两个主要模块组成,包括缩放特征融合模块和部分关联模块。前一个模块旨在提取缩放融合特征,该特征可以有效地表示每个胃部分在不同视角和比例变化下的黏膜。后一个模块旨在应用具有三个部分关联损失的医学先验知识,对不同胃部分的关联进行建模,以用于CGI诊断。所提出的方法优于其他深度学习方法,分别实现了0.957、0.938和0.962的高测试准确率、灵敏度和特异性。所提出的方法是第一种无需侵入性活检和耗时的病理分析即可从内镜图像中识别出患有CGI的胃癌高风险患者的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1312/11186652/736318094e42/huang1-3277219.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验