PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, 482005, India.
PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, 482005, India.
Comput Biol Med. 2021 Oct;137:104789. doi: 10.1016/j.compbiomed.2021.104789. Epub 2021 Aug 25.
Wireless capsule endoscopy (WCE) is one of the most efficient methods for the examination of gastrointestinal tracts. Computer-aided intelligent diagnostic tools alleviate the challenges faced during manual inspection of long WCE videos. Several approaches have been proposed in the literature for the automatic detection and localization of anomalies in WCE images. Some of them focus on specific anomalies such as bleeding, polyp, lesion, etc. However, relatively fewer generic methods have been proposed to detect all those common anomalies simultaneously. In this paper, a deep convolutional neural network (CNN) based model 'WCENet' is proposed for anomaly detection and localization in WCE images. The model works in two phases. In the first phase, a simple and efficient attention-based CNN classifies an image into one of the four categories: polyp, vascular, inflammatory, or normal. If the image is classified in one of the abnormal categories, it is processed in the second phase for the anomaly localization. Fusion of Grad-CAM++ and a custom SegNet is used for anomalous region segmentation in the abnormal image. WCENet classifier attains accuracy and area under receiver operating characteristic of 98% and 99%. The WCENet segmentation model obtains a frequency weighted intersection over union of 81%, and an average dice score of 56% on the KID dataset. WCENet outperforms nine different state-of-the-art conventional machine learning and deep learning models on the KID dataset. The proposed model demonstrates potential for clinical applications.
无线胶囊内镜 (WCE) 是胃肠道检查最有效的方法之一。计算机辅助智能诊断工具缓解了手动检查长 WCE 视频时面临的挑战。文献中已经提出了几种用于自动检测和定位 WCE 图像异常的方法。其中一些方法专注于特定的异常,如出血、息肉、病变等。然而,相对较少提出通用方法来同时检测所有常见的异常。在本文中,提出了一种基于深度卷积神经网络 (CNN) 的模型 'WCENet',用于 WCE 图像中的异常检测和定位。该模型分两个阶段工作。在第一阶段,一个简单而高效的基于注意力的 CNN 将图像分为四类之一:息肉、血管、炎症或正常。如果图像被分类为异常类别之一,则在第二阶段进行异常定位处理。异常图像中的异常区域分割采用 Grad-CAM++和自定义 SegNet 的融合。WCENet 分类器在 KID 数据集上的准确率和接收者操作特征曲线下面积分别达到 98%和 99%。WCENet 分割模型在 KID 数据集上的频率加权交并比为 81%,平均骰子分数为 56%。WCENet 在 KID 数据集上优于九种不同的最先进的传统机器学习和深度学习模型。该模型具有临床应用的潜力。