Lou Yiyue, Jones Michael P, Sun Wanjie
a Department of Biostatistics , University of Iowa College of Public Health , Iowa City , IA , USA.
b Office of Biostatistics , Center for Drug Evaluation and Research, Food and Drug Administration (CDER/FDA) , Silver Spring , MD , USA.
J Biopharm Stat. 2019;29(1):151-173. doi: 10.1080/10543406.2018.1489408. Epub 2018 Jul 11.
In clinical endpoint bioequivalence (BE) studies, the primary analysis for assessing equivalence between a generic and an innovator product is based on the observed per-protocol (PP) population (usually completers and compliers). However, missing data and noncompliance are post-randomization intercurrent events and may introduce selection bias. Therefore, PP analysis is generally not causal. The FDA Missing Data Working Group recommended using "causal estimands of primary interest." In this paper, we propose a principal stratification causal framework and co-primary causal estimands to test equivalence, which was also recommended by the recently published ICH E9 (R1) addendum to address intercurrent events. We identify three conditions under which the current PP estimator is unbiased for one of the proposed co-primary causal estimands - the "Survivor Average Causal Effect" (SACE) estimand. Simulation shows that when these three conditions are not met, the PP estimator is biased and may inflate Type 1 error and/or change power. We also propose a tipping point sensitivity analysis to evaluate the robustness of the current PP estimator in testing equivalence when the sensitivity parameters deviate from the three identified conditions, but stay within a clinically meaningful range. Our work is the first causal equivalence assessment in equivalence studies with intercurrent events.
在临床终点生物等效性(BE)研究中,评估仿制药与创新药之间等效性的主要分析基于观察到的符合方案(PP)人群(通常是完成者和依从者)。然而,缺失数据和不依从是随机化后的并发事件,可能会引入选择偏倚。因此,PP分析通常不具有因果性。美国食品药品监督管理局(FDA)缺失数据工作组建议使用“主要关注的因果估计量”。在本文中,我们提出了一个主分层因果框架和共同主要因果估计量来检验等效性,这也是最近发布的国际人用药品注册技术协调会(ICH)E9(R1)增编中推荐的用于处理并发事件的方法。我们确定了三个条件,在这三个条件下,当前的PP估计量对于所提出的共同主要因果估计量之一——“幸存者平均因果效应”(SACE)估计量是无偏的。模拟表明,当这三个条件不满足时,PP估计量存在偏差,可能会夸大一类错误和/或改变检验效能。我们还提出了一个临界点敏感性分析,以评估当敏感性参数偏离所确定的三个条件但仍在临床有意义的范围内时,当前PP估计量在检验等效性时的稳健性。我们的工作是在存在并发事件的等效性研究中的首次因果等效性评估。