Institut de Recherche Experimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Cliniques Universitaires Saint-Luc and Université Catholique de Louvain, Brussels, Belgium.
PLoS One. 2018 Jul 11;13(7):e0200352. doi: 10.1371/journal.pone.0200352. eCollection 2018.
Reduced bioavailability of nitric oxide (NO) is a major feature of endothelial dysfunction characteristic of cardiovascular and metabolic diseases but the short half-life of NO precludes its easy quantification in circulating blood for early diagnosis. In erythrocytes, NO can react with hemoglobin to form an iron-nitrosyl complex (5-coordinate-α-HbNO) directly quantifiable by Electron Paramagnetic Resonance spectroscopy (EPR) in mouse, rat and human venous blood ex vivo. However, the sources of the nitrosylating species in vivo and optimal conditions of HbNO preservation for diagnostic use in human erythrocytes are unknown. Using EPR spectroscopy, we found that HbNO stability was significantly higher under hypoxia (equivalent to venous pO2; 12.0±0.2% degradation of HbNO at 30 minutes) than at room air (47.7±0.2% degradation) in intact erythrocytes; at 20°C (15.2±0.3% degradation after 30 min versus 29.6±0.1% at 37°C) and under acidic pH (31.7±0.8% versus 62.2±0.4% degradation after 30 min at physiological pH) at 50% of haematocrit. We next examined the relative contribution of NO synthase (NOS) from the vasculature or in erythrocytes themselves as a source of nitrosylating NO. We detected a NOS activity (and eNOS expression) in human red blood cells (RBC), and in RBCs from eNOS(+/+) (but not eNOS(-/-)) mice, as measured by HbNO formation and nitrite/nitrate accumulation. NO formation was increased after inhibition of arginase but abrogated upon NOS inhibition in human RBC and in RBCs from eNOS(+/+) (but not eNOS(-/-)) mice. However, the HbNO signal from freshly drawn venous RBCs was minimally sensitive to the inhibitors ex vivo, while it was enhanced upon caveolin-1 deletion in vivo, suggesting a minor contribution of erythrocyte NOS to HbNO complex formation compared with vascular endothelial NOS or other paracrine NO sources. We conclude that HbNO formation in rodent and human venous erythrocytes is mainly influenced by vascular NO sources despite the erythrocyte NOS activity, so that its measurement by EPR could serve as a surrogate for NO-dependent endothelial function.
一氧化氮(NO)生物利用度降低是心血管和代谢疾病特征性内皮功能障碍的主要特征,但由于 NO 的半衰期短,难以在循环血液中进行早期诊断。在红细胞中,NO 可以与血红蛋白反应形成铁亚硝酰复合物(5 配位-α-HbNO),这在老鼠、大鼠和人类静脉血离体的电子顺磁共振波谱(EPR)中可以直接定量。然而,体内亚硝酰化物质的来源以及用于人类红细胞诊断的 HbNO 保存的最佳条件尚不清楚。使用 EPR 光谱,我们发现,在完整的红细胞中,缺氧(相当于静脉 pO2;30 分钟时 HbNO 降解 12.0±0.2%)下 HbNO 的稳定性明显高于在空气(47.7±0.2%降解)下;在 20°C(30 分钟后降解 15.2±0.3%,而在 37°C 下降解 29.6±0.1%)和酸性 pH(生理 pH 下 30 分钟后降解 31.7±0.8%,而降解 62.2±0.4%)下;在 50%的血球比容下。接下来,我们研究了血管内皮或红细胞本身作为亚硝酰化 NO 来源的一氧化氮合酶(NOS)的相对贡献。我们检测到人类红细胞(RBC)中存在 NOS 活性(和 eNOS 表达),并且在 eNOS(+/+)(但不是 eNOS(-/-))小鼠的 RBC 中存在 NOS 活性,这可以通过 HbNO 的形成和亚硝酸盐/硝酸盐的积累来衡量。在抑制精氨酸酶后,NO 的形成增加,但在人类 RBC 和 eNOS(+/+)(但不是 eNOS(-/-))小鼠的 RBC 中抑制 NOS 后则消除。然而,来自静脉血 RBC 的 HbNO 信号在离体时对抑制剂的敏感性最低,而在体内 Cav-1 缺失时增强,这表明与血管内皮 NOS 或其他旁分泌 NO 来源相比,红细胞 NOS 对 HbNO 复合物形成的贡献较小。我们得出结论,尽管存在红细胞 NOS 活性,但在啮齿动物和人类静脉红细胞中 HbNO 的形成主要受血管 NO 来源的影响,因此通过 EPR 测量其可以作为 NO 依赖性内皮功能的替代指标。