Suppr超能文献

相似文献

1
Cellulases from Thermophiles Found by Metagenomics.
Microorganisms. 2018 Jul 10;6(3):66. doi: 10.3390/microorganisms6030066.
2
Bioprospecting thermophiles for cellulase production: a review.
Braz J Microbiol. 2012 Jul;43(3):844-56. doi: 10.1590/S1517-83822012000300001. Epub 2012 Jun 1.
3
Exploration of extremophiles for high temperature biotechnological processes.
Curr Opin Microbiol. 2015 Jun;25:113-9. doi: 10.1016/j.mib.2015.05.011. Epub 2015 Jun 9.
4
Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review.
Crit Rev Microbiol. 2018 Mar;44(2):244-257. doi: 10.1080/1040841X.2017.1337713. Epub 2017 Jun 13.
5
Thermostable cellulases: Current status and perspectives.
Bioresour Technol. 2019 May;279:385-392. doi: 10.1016/j.biortech.2019.01.049. Epub 2019 Jan 14.
6
Cellulolytic thermophilic microorganisms in white biotechnology: a review.
Folia Microbiol (Praha). 2020 Feb;65(1):25-43. doi: 10.1007/s12223-019-00710-6. Epub 2019 May 17.
8
Screening for cellulase-encoding clones in metagenomic libraries.
Methods Mol Biol. 2010;668:177-88. doi: 10.1007/978-1-60761-823-2_12.
9
Neutral and alkaline cellulases: Production, engineering, and applications.
J Basic Microbiol. 2017 Aug;57(8):653-658. doi: 10.1002/jobm.201700111. Epub 2017 May 15.
10
Screening for Cellulase Encoding Clones in Metagenomic Libraries.
Methods Mol Biol. 2017;1539:205-217. doi: 10.1007/978-1-4939-6691-2_12.

引用本文的文献

3
Extremophiles: the species that evolve and survive under hostile conditions.
3 Biotech. 2023 Sep;13(9):316. doi: 10.1007/s13205-023-03733-6. Epub 2023 Aug 25.
4
Complex organic matter degradation by secondary consumers in chemolithoautotrophy-based subsurface geothermal ecosystems.
PLoS One. 2023 Aug 18;18(8):e0281277. doi: 10.1371/journal.pone.0281277. eCollection 2023.
5
Improving the Enzymatic Activity and Stability of a Lytic Polysaccharide Monooxygenase.
Int J Mol Sci. 2023 May 18;24(10):8963. doi: 10.3390/ijms24108963.
10
Metagenomic mining of Indian river confluence reveal functional microbial community with lignocelluloytic potential.
3 Biotech. 2022 Jun;12(6):132. doi: 10.1007/s13205-022-03190-7. Epub 2022 May 21.

本文引用的文献

1
Biochemical characterization of a novel thermostable β-glucosidase from Dictyoglomus turgidum.
Int J Biol Macromol. 2018 Jul 1;113:783-791. doi: 10.1016/j.ijbiomac.2018.03.018. Epub 2018 Mar 5.
2
Functional and structural characterization of a β-glucosidase involved in saponin metabolism from intestinal bacteria.
Biochem Biophys Res Commun. 2018 Feb 19;496(4):1349-1356. doi: 10.1016/j.bbrc.2018.02.018. Epub 2018 Feb 5.
3
Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review.
Crit Rev Microbiol. 2018 Mar;44(2):244-257. doi: 10.1080/1040841X.2017.1337713. Epub 2017 Jun 13.
5
β-Glucosidase from Streptomyces griseus: Nanoparticle immobilisation and application to alkyl glucoside synthesis.
Protein Expr Purif. 2017 Apr;132:164-170. doi: 10.1016/j.pep.2017.01.011. Epub 2017 Feb 1.
6
Metagenomics of Thermophiles with a Focus on Discovery of Novel Thermozymes.
Front Microbiol. 2016 Sep 27;7:1521. doi: 10.3389/fmicb.2016.01521. eCollection 2016.
10
Engineering a highly active thermophilic β-glucosidase to enhance its pH stability and saccharification performance.
Biotechnol Biofuels. 2016 Jul 20;9:147. doi: 10.1186/s13068-016-0560-8. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验