Columbia University Department of Biomedical Engineering, 500 W 120th St, New York, NY, 10027, USA.
Stem Cell Res Ther. 2018 Jul 11;9(1):190. doi: 10.1186/s13287-018-0930-1.
The fully developed adult skeleton adapts to mechanical forces by generating more bone, usually at the periosteal surface. Progenitor cells in the periosteum are believed to differentiate into bone-forming osteoblasts that contribute to load-induced adult bone formation, but in vivo evidence does not yet exist. Furthermore, the mechanism by which periosteal progenitors might sense physical loading and trigger differentiation is unknown. We propose that periosteal osteochondroprogenitors (OCPs) directly sense mechanical load and differentiate into bone-forming osteoblasts via their primary cilia, mechanosensory organelles known to be involved in osteogenic differentiation.
We generated a diphtheria toxin ablation mouse model and performed ulnar loading and dynamic histomorphometry to quantify the contribution of periosteal OCPs in adult bone formation in vivo. We also generated a primary cilium knockout model and isolated periosteal cells to study the role of the cilium in periosteal OCP mechanosensing in vitro. Experimental groups were compared using one-way analysis of variance or student's t test, and sample size was determined to achieve a minimum power of 80%.
Mice without periosteal OCPs had severely attenuated mechanically induced bone formation and lacked the mineralization necessary for daily skeletal maintenance. Our in vitro results demonstrate that OCPs in the periosteum uniquely sense fluid shear and exhibit changes in osteogenic markers consistent with osteoblast differentiation; however, this response is essentially lost when the primary cilium is absent.
Combined, our data show that periosteal progenitors are a mechanosensitive cell source that significantly contribute to adult skeletal maintenance. More importantly, an OCP population persists in the adult skeleton and these cells, as well as their cilia, are promising targets for bone regeneration strategies.
完全发育成熟的成人骨骼通过在骨膜表面生成更多的骨骼来适应机械力。骨膜中的祖细胞被认为分化为成骨细胞,有助于负荷诱导的成人骨形成,但目前还没有体内证据。此外,骨膜祖细胞感知物理负荷并触发分化的机制尚不清楚。我们提出,骨膜骨软骨祖细胞(OCP)通过其初级纤毛直接感知机械负荷,并分化为成骨细胞,初级纤毛是已知参与成骨分化的机械感受器。
我们生成白喉毒素消融小鼠模型,并进行尺骨加载和动态组织形态计量学分析,以定量测量骨膜 OCP 在体内成人骨形成中的作用。我们还生成了初级纤毛敲除模型并分离骨膜细胞,以研究纤毛在骨膜 OCP 机械感受中的作用。使用单因素方差分析或学生 t 检验比较实验组,样本量确定为最小功效 80%。
没有骨膜 OCP 的小鼠的机械诱导骨形成严重减弱,并且缺乏维持日常骨骼所需的矿化。我们的体外结果表明,骨膜中的 OCP 独特地感知流体剪切,并表现出与成骨细胞分化一致的成骨标志物变化;然而,当初级纤毛缺失时,这种反应基本上消失了。
综合来看,我们的数据表明,骨膜祖细胞是一种机械敏感的细胞来源,对成人骨骼维持有重要贡献。更重要的是,成骨细胞群体在成人骨骼中持续存在,这些细胞及其纤毛是骨再生策略的有前途的靶点。