Suppr超能文献

FTO 依赖性 N6-甲基腺苷调节重塑和修复过程中心脏功能。

FTO-Dependent N-Methyladenosine Regulates Cardiac Function During Remodeling and Repair.

机构信息

Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY.

出版信息

Circulation. 2019 Jan 22;139(4):518-532. doi: 10.1161/CIRCULATIONAHA.118.033794.

Abstract

BACKGROUND

Despite its functional importance in various fundamental bioprocesses, studies of N-methyladenosine (m6A) in the heart are lacking. Here, we show that the FTO (fat mass and obesity-associated protein), an m6A demethylase, plays a critical role in cardiac contractile function during homeostasis, remodeling, and regeneration.

METHODS

We used clinical human samples, preclinical pig and mouse models, and primary cardiomyocyte cell cultures to study the functional role of m6A and FTO in the heart and in cardiomyocytes. We modulated expression of FTO by using adeno-associated virus serotype 9 (in vivo), adenovirus (both in vivo and in vitro), and small interfering RNAs (in vitro) to study its function in regulating cardiomyocyte m6A, calcium dynamics and contractility, and cardiac function postischemia. We performed methylated (m6A) RNA immunoprecipitation sequencing to map transcriptome-wide m6A, and methylated (m6A) RNA immunoprecipitation quantitative polymerase chain reaction assays to map and validate m6A in individual transcripts, in healthy and failing hearts, and in myocytes.

RESULTS

We discovered that FTO has decreased expression in failing mammalian hearts and hypoxic cardiomyocytes, thereby increasing m6A in RNA and decreasing cardiomyocyte contractile function. Improving expression of FTO in failing mouse hearts attenuated the ischemia-induced increase in m6A and decrease in cardiac contractile function. This is performed by the demethylation activity of FTO, which selectively demethylates cardiac contractile transcripts, thus preventing their degradation and improving their protein expression under ischemia. In addition, we demonstrate that FTO overexpression in mouse models of myocardial infarction decreased fibrosis and enhanced angiogenesis.

CONCLUSIONS

Collectively, our study demonstrates the functional importance of the FTO-dependent cardiac m6A methylome in cardiac contraction during heart failure and provides a novel mechanistic insight into the therapeutic mechanisms of FTO.

摘要

背景

尽管 N6-甲基腺苷(m6A)在各种基础生物过程中具有重要的功能,但目前关于心脏中 m6A 的研究还很缺乏。在这里,我们展示了 FTO(肥胖相关蛋白)作为一种 m6A 去甲基化酶,在心脏的稳态、重塑和再生过程中对心肌收缩功能起着关键作用。

方法

我们使用临床人体样本、猪和小鼠的临床前模型以及原代心肌细胞培养物来研究 m6A 和 FTO 在心脏和心肌细胞中的功能作用。我们通过使用腺相关病毒血清型 9(体内)、腺病毒(体内和体外)和小干扰 RNA(体外)来调节 FTO 的表达,研究其在调节心肌细胞 m6A、钙动力学和收缩性以及缺血后心脏功能中的作用。我们进行了 m6A RNA 免疫沉淀测序以绘制转录组范围内的 m6A,以及 m6A RNA 免疫沉淀定量聚合酶链反应测定以绘制和验证健康和衰竭心脏以及心肌细胞中 m6A 的单个转录本。

结果

我们发现 FTO 在衰竭的哺乳动物心脏和缺氧心肌细胞中的表达减少,从而增加了 RNA 中的 m6A,并降低了心肌细胞的收缩功能。在衰竭的小鼠心脏中提高 FTO 的表达,可减轻缺血引起的 m6A 增加和心脏收缩功能下降。这是通过 FTO 的去甲基化活性来实现的,该活性选择性地去甲基化心脏收缩转录本,从而防止它们在缺血下降解并提高其蛋白表达。此外,我们证明在心肌梗死的小鼠模型中过表达 FTO 可减少纤维化并增强血管生成。

结论

总的来说,我们的研究表明,FTO 依赖性心脏 m6A 甲基组在心力衰竭期间的心脏收缩中具有重要的功能意义,并为 FTO 的治疗机制提供了新的机制见解。

相似文献

1
FTO-Dependent N-Methyladenosine Regulates Cardiac Function During Remodeling and Repair.
Circulation. 2019 Jan 22;139(4):518-532. doi: 10.1161/CIRCULATIONAHA.118.033794.
2
The N-Methyladenosine mRNA Methylase METTL3 Controls Cardiac Homeostasis and Hypertrophy.
Circulation. 2019 Jan 22;139(4):533-545. doi: 10.1161/CIRCULATIONAHA.118.036146.
3
6
Regulation of N6-Methyladenosine after Myocardial Infarction.
Cells. 2022 Jul 22;11(15):2271. doi: 10.3390/cells11152271.
9
N6-Methyladenosine Demethylase FTO (Fat Mass and Obesity-Associated Protein) as a Novel Mediator of Statin Effects in Human Endothelial Cells.
Arterioscler Thromb Vasc Biol. 2022 May;42(5):644-658. doi: 10.1161/ATVBAHA.121.317295. Epub 2022 Mar 17.
10
Increased N6-methyladenosine causes infertility is associated with FTO expression.
J Cell Physiol. 2018 Sep;233(9):7055-7066. doi: 10.1002/jcp.26507. Epub 2018 Mar 25.

引用本文的文献

3
Epigenetic Mechanisms in Heart Diseases.
Rev Cardiovasc Med. 2025 Jul 30;26(7):38696. doi: 10.31083/RCM38696. eCollection 2025 Jul.
5
Pannexin1 via P2rx7/amphiregulin contributes to cardiac fibrosis post myocardial infarction.
J Mol Histol. 2025 Jul 15;56(4):230. doi: 10.1007/s10735-025-10517-0.
6
Emerging mechanisms and implications of m6A in CVDs: potential applications of natural products.
Front Cardiovasc Med. 2025 Jun 30;12:1559064. doi: 10.3389/fcvm.2025.1559064. eCollection 2025.
7
N6-methyladenosine RNA landscape in the aged mouse hearts.
Front Cardiovasc Med. 2025 Jun 18;12:1563364. doi: 10.3389/fcvm.2025.1563364. eCollection 2025.
9
METTL3 promotes the hypertrophic scar fibrosis via m6A RNA methylation of GRAMD1B mRNA.
J Mol Histol. 2025 Jun 14;56(3):195. doi: 10.1007/s10735-025-10475-7.
10
Epigenetic modifications in cardiac fibrosis: recent evidence of new pharmacological targets.
Front Mol Biosci. 2025 May 2;12:1583446. doi: 10.3389/fmolb.2025.1583446. eCollection 2025.

本文引用的文献

1
R-2HG Exhibits Anti-tumor Activity by Targeting FTO/mA/MYC/CEBPA Signaling.
Cell. 2018 Jan 11;172(1-2):90-105.e23. doi: 10.1016/j.cell.2017.11.031. Epub 2017 Dec 14.
2
Promoter-bound METTL3 maintains myeloid leukaemia by mA-dependent translation control.
Nature. 2017 Dec 7;552(7683):126-131. doi: 10.1038/nature24678. Epub 2017 Nov 27.
3
4
mA Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program.
Cancer Cell. 2017 Apr 10;31(4):591-606.e6. doi: 10.1016/j.ccell.2017.02.013. Epub 2017 Mar 23.
5
N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein.
Nucleic Acids Res. 2017 Jun 2;45(10):6051-6063. doi: 10.1093/nar/gkx141.
7
RNA mA methylation regulates the ultraviolet-induced DNA damage response.
Nature. 2017 Mar 23;543(7646):573-576. doi: 10.1038/nature21671. Epub 2017 Mar 15.
8
mA-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition.
Nature. 2017 Feb 23;542(7642):475-478. doi: 10.1038/nature21355. Epub 2017 Feb 13.
9
FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N-Methyladenosine RNA Demethylase.
Cancer Cell. 2017 Jan 9;31(1):127-141. doi: 10.1016/j.ccell.2016.11.017. Epub 2016 Dec 22.
10
Reversible methylation of mA in the 5' cap controls mRNA stability.
Nature. 2017 Jan 19;541(7637):371-375. doi: 10.1038/nature21022. Epub 2016 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验