Suppr超能文献

功能连接组学的拓扑分析:全局信号去除、脑区划分和零模型的关键作用。

Topological analyses of functional connectomics: A crucial role of global signal removal, brain parcellation, and null models.

机构信息

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.

Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.

出版信息

Hum Brain Mapp. 2018 Nov;39(11):4545-4564. doi: 10.1002/hbm.24305. Epub 2018 Jul 12.

Abstract

Recently, functional connectome studies based on resting-state functional magnetic resonance imaging (R-fMRI) and graph theory have greatly advanced our understanding of the topological principles of healthy and diseased brains. However, how different strategies for R-fMRI data preprocessing and for connectome analyses jointly affect topological characterization and contrastive research of brain networks remains to be elucidated. Here, we used two R-fMRI data sets, a healthy young adult data set and an Alzheimer's disease (AD) patient data set, and up to 42 analysis strategies to comprehensively investigate the joint influence of three key factors (global signal regression, regional parcellation schemes, and null network models) on the topological analysis and contrastive research of whole-brain functional networks. At the global level, we first found that these three factors affected not only the quantitative values but also the individual variability profile in small-world related metrics and modularity, wherein global signal regression exhibited the predominant influence. Moreover, strategies without global signal regression and with topological randomization null model enhanced the sensitivity of the detection of differences between AD and control groups in small-worldness and modularity. At the nodal level, strategies of global signal regression dominantly influenced the spatial distribution of both hubs and between-group differences in terms of nodal degree centrality. Together, we highlight the remarkable joint influence of global signal regression, regional parcellation schemes and null network models on functional connectome analyses in both health and diseases, which may provide guidance for the choice of analysis strategies in future functional network studies.

摘要

最近,基于静息态功能磁共振成像(R-fMRI)和图论的功能连接组学研究极大地促进了我们对健康和患病大脑拓扑原理的理解。然而,不同的 R-fMRI 数据预处理策略和连接组分析策略如何共同影响脑网络的拓扑特征和对比研究仍有待阐明。在这里,我们使用了两个 R-fMRI 数据集,一个是健康年轻成年人数据集,另一个是阿尔茨海默病(AD)患者数据集,以及多达 42 种分析策略,全面研究了三个关键因素(全局信号回归、区域分割方案和零模型网络)对全脑功能网络的拓扑分析和对比研究的联合影响。在全局水平上,我们首先发现这三个因素不仅影响了定量值,还影响了小世界相关度量和模块性的个体可变性分布,其中全局信号回归表现出主要影响。此外,没有全局信号回归和具有拓扑随机化零模型的策略增强了对 AD 组和对照组之间小世界性和模块性差异的检测敏感性。在节点水平上,全局信号回归策略主要影响了节点度中心性的节点的空间分布和组间差异。总之,我们强调了全局信号回归、区域分割方案和零模型网络对健康和疾病中的功能连接组学分析的显著联合影响,这可能为未来功能网络研究中的分析策略选择提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验