Suppr超能文献

空间平滑对功能脑网络的影响。

Effects of spatial smoothing on functional brain networks.

机构信息

Department of Computer Science, School of Science, Aalto University, PO Box 15400, FI-00076, Aalto, Espoo, Finland.

Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland.

出版信息

Eur J Neurosci. 2017 Nov;46(9):2471-2480. doi: 10.1111/ejn.13717. Epub 2017 Oct 20.

Abstract

Graph-theoretical methods have rapidly become a standard tool in studies of the structure and function of the human brain. Whereas the structural connectome can be fairly straightforwardly mapped onto a complex network, there are more degrees of freedom in constructing networks that represent functional connections between brain areas. For functional magnetic resonance imaging (fMRI) data, such networks are typically built by aggregating the blood-oxygen-level dependent signal time series of voxels into larger entities (such as Regions of Interest in some brain atlas) and determining their connection strengths from some measure of time-series correlations. Although it is evident that the outcome must be affected by how the voxel-level time series are treated at the preprocessing stage, there is a lack of systematic studies of the effects of preprocessing on network structure. Here, we focus on the effects of spatial smoothing, a standard preprocessing method for fMRI. We apply various levels of spatial smoothing to resting-state fMRI data and measure the changes induced in functional networks. We show that the level of spatial smoothing clearly affects the degrees and other centrality measures of functional network nodes; these changes are non-uniform, systematic, and depend on the geometry of the brain. The composition of the largest connected network component is also affected in a way that artificially increases the similarity of the networks of different subjects. Our conclusion is that wherever possible, spatial smoothing should be avoided when preprocessing fMRI data for network analysis.

摘要

图论方法已迅速成为研究人类大脑结构和功能的标准工具。虽然结构连接组可以相当直接地映射到复杂网络上,但在构建表示大脑区域之间功能连接的网络时,自由度更大。对于功能磁共振成像 (fMRI) 数据,此类网络通常通过将体素的血氧水平依赖信号时间序列聚合到更大的实体(例如某些脑图谱中的感兴趣区域)中,并根据时间序列相关性的某种度量来确定它们的连接强度来构建。尽管显然,预处理阶段如何处理体素水平时间序列必然会影响结果,但对预处理对网络结构的影响缺乏系统研究。在这里,我们专注于空间平滑的影响,这是 fMRI 的一种标准预处理方法。我们将各种水平的空间平滑应用于静息态 fMRI 数据,并测量功能网络中诱导的变化。我们表明,空间平滑的水平明显影响功能网络节点的度数和其他中心性度量;这些变化是非均匀的、系统的,并且取决于大脑的几何形状。最大连通网络组件的组成也受到影响,以一种人为增加不同受试者网络之间相似性的方式。我们的结论是,无论何时何地,只要有可能,在进行 fMRI 数据的网络分析预处理时,都应避免空间平滑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d358/5698731/1cc15718da53/EJN-46-2471-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验