Carbon and Composites Group, Materials Science and Technology Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37931 , United States.
ACS Appl Mater Interfaces. 2018 Aug 8;10(31):26576-26585. doi: 10.1021/acsami.8b03401. Epub 2018 Jul 24.
This work provides a proof of principle that a high volume, continuous throughput fiber coating process can be used to integrate semiconducting nanoparticles on carbon fiber surfaces to create multifunctional composites. By embedding silicon carbide nanoparticles in the fiber sizing, subsequent composite fabrication methods are used to create unidirectional fiber-reinforced composites with enhanced structural health monitoring (SHM) sensitivity and increased interlaminar strength. Additional investigations into the mechanical damping behavior of these functional composites reveal a significantly increased loss factor at the glass-transition temperature ranging from a 65 to 257% increase. Composites with both increased interlaminar strength and SHM sensitivity are produced from a variety of epoxy and silicon carbide nanoparticle concentrations. Overall, the best performing composite in terms of combined performance shows an increase of 47.5% in SHM sensitivity and 7.7% increase in interlaminar strength. This work demonstrates successful and efficient integration of nanoparticle synthesis into large-scale, structural applications.
这项工作证明了一种高容量、连续吞吐量的纤维涂层工艺可以用于将半导体纳米粒子集成到碳纤维表面,从而制造多功能复合材料。通过将碳化硅纳米粒子嵌入纤维上浆剂中,随后使用复合制造方法来制造具有增强结构健康监测 (SHM) 灵敏度和增加层间强度的单向纤维增强复合材料。对这些功能复合材料的机械阻尼行为的进一步研究表明,在玻璃化转变温度范围内,损耗因子显著增加,从 65%增加到 257%。具有增加的层间强度和 SHM 灵敏度的复合材料是由各种环氧树脂和碳化硅纳米粒子浓度制成的。总的来说,在综合性能方面表现最好的复合材料在 SHM 灵敏度方面提高了 47.5%,在层间强度方面提高了 7.7%。这项工作展示了成功高效地将纳米粒子合成集成到大规模结构应用中。