Gupta Sumit, Sohail Tanvir, Checa Marti, Rohewal Sargun S, Toomey Michael D, Kanbargi Nihal, Damron Joshua T, Collins Liam, Kearney Logan T, Naskar Amit K, Bowland Christopher C
Carbon and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
Advanced Computing for Chemistry and Materials Group, National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
Adv Sci (Weinh). 2024 Feb;11(6):e2305642. doi: 10.1002/advs.202305642. Epub 2023 Dec 25.
High strength and ductility are highly desired in fiber-reinforced composites, yet achieving both simultaneously remains elusive. A hierarchical architecture is developed utilizing high aspect ratio chemically transformable thermoplastic nanofibers that form covalent bonding with the matrix to toughen the fiber-matrix interphase. The nanoscale fibers are electrospun on the micrometer-scale reinforcing carbon fiber, creating a physically intertwined, randomly oriented scaffold. Unlike conventional covalent bonding of matrix molecules with reinforcing fibers, here, the nanofiber scaffold is utilized - interacting non-covalently with core fiber but bridging covalently with polymer matrix - to create a high volume fraction of immobilized matrix or interphase around core reinforcing elements. This mechanism enables efficient fiber-matrix stress transfer and enhances composite toughness. Molecular dynamics simulation reveals enhancement of the fiber-matrix adhesion facilitated by nanofiber-aided hierarchical bonding with the matrix. The elastic modulus contours of interphase regions obtained from atomic force microscopy clearly indicate the formation of stiffer interphase. These nanoengineered composites exhibit a ≈60% and ≈100% improved in-plane shear strength and toughness, respectively. This approach opens a new avenue for manufacturing toughened high-performance composites.
在纤维增强复合材料中,高强度和高延展性是人们所高度期望的,但同时实现这两者仍然难以捉摸。利用具有高纵横比的可化学转化的热塑性纳米纤维开发了一种分级结构,这些纳米纤维与基体形成共价键,以增韧纤维-基体界面。纳米级纤维在微米级增强碳纤维上进行静电纺丝,形成物理上相互缠绕、随机取向的支架。与基体分子与增强纤维的传统共价键合不同,这里利用纳米纤维支架——与芯纤维非共价相互作用,但与聚合物基体共价桥接——在芯增强元件周围形成高体积分数的固定基体或界面。这种机制能够实现高效的纤维-基体应力传递并提高复合材料的韧性。分子动力学模拟表明,纳米纤维辅助的与基体的分级键合促进了纤维-基体的粘附。从原子力显微镜获得的界面区域的弹性模量等高线清楚地表明形成了更硬的界面。这些纳米工程复合材料的面内剪切强度和韧性分别提高了约60%和约100%。这种方法为制造增韧的高性能复合材料开辟了一条新途径。