Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan.
Molecules. 2018 Jul 2;23(7):1610. doi: 10.3390/molecules23071610.
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase involved in various cancers. In its basal state, the structure of ALK is in an autoinhibitory form stabilized by its A-loop, which runs from the N-lobe to the C-lobe of the kinase. Specifically, the A-loop adopts an inhibitory pose with its proximal A-loop helix (αAL-helix) to anchor the αC-helix orientation in an inactive form in the N-lobe; the distal portion of the A-loop is packed against the C-lobe to block the peptide substrate from binding. Upon phosphorylation of the first A-loop tyrosine (Y1278), the αAL-helix unfolds; the distal A-loop detaches from the C-lobe and reveals the P+1 pocket that accommodates the residues immediately after their phosphorylation, and ALK is activated accordingly. Recently, two neuroblastoma mutants, F1174L and R1275Q, have been determined to cause ALK activation without phosphorylation on Y1278. Notably, F1174 is located on the C-terminus of the αC-helix and away from the A-loop, whereas R1275 sits on the αAL-helix. In this molecular modeling study, we investigated the structural impacts of F1174L and R1275Q that lead to the gain-of-function event. Wild-type ALK and ALK with phosphorylated Y1278 were also modeled for comparison. Our modeling suggests that the replacement of F1174 with a smaller residue, namely leucine, moves the αC-helix and αAL-helix into closer contact and further distorts the distal portion of the A-loop. In wild-type ALK, R1275 assumes the dual role of maintaining the αAL-helix⁻αC-helix interaction in an inactive form and securing αAL-helix conformation through the D1276⁻R1275 interaction. Accordingly, mutating R1275 to a glutamine reorients the αC-helix to an active form and deforms the entire A-loop. In both F1174L and R1275Q mutants, the A-loop rearranges itself to expose the P+1 pocket, and kinase activity resumes.
间变性淋巴瘤激酶(ALK)是一种参与多种癌症的受体酪氨酸激酶。在其基础状态下,ALK 的结构处于由其 A 环稳定的自动抑制形式,该 A 环从激酶的 N lobe 延伸到 C lobe。具体来说,A 环采用抑制构象,其近端 A 环螺旋(αAL-helix)将 αC-helix 取向锚定在无活性形式的 N lobe 中;A 环的远端部分与 C lobe 结合,阻止肽底物结合。当第一个 A 环酪氨酸(Y1278)磷酸化后,αAL-helix 展开;远端 A 环与 C lobe 分离,并暴露出容纳磷酸化后残基的 P+1 口袋,ALK 相应激活。最近,两种神经母细胞瘤突变体 F1174L 和 R1275Q 已被确定可在 Y1278 不磷酸化的情况下导致 ALK 激活。值得注意的是,F1174 位于 αC-helix 的 C 末端,远离 A 环,而 R1275 位于 αAL-helix 上。在这项分子建模研究中,我们研究了导致获得功能事件的 F1174L 和 R1275Q 的结构影响。还对野生型 ALK 和磷酸化 Y1278 的 ALK 进行了建模比较。我们的建模表明,用较小的残基亮氨酸取代 F1174 会使 αC-helix 和 αAL-helix 更紧密地接触,并进一步扭曲 A 环的远端部分。在野生型 ALK 中,R1275 同时发挥两种作用:维持 αAL-helix⁻αC-helix 相互作用处于无活性形式,并通过 D1276⁻R1275 相互作用确保 αAL-helix 构象。因此,将 R1275 突变为谷氨酰胺会使 αC-helix 转向活性形式并使整个 A 环变形。在 F1174L 和 R1275Q 突变体中,A 环重新排列以暴露 P+1 口袋,激酶活性恢复。