Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA.
Phys Rev Lett. 2018 Jun 29;120(26):268001. doi: 10.1103/PhysRevLett.120.268001.
Fundamental biological and biomimetic processes, from tissue morphogenesis to soft robotics, rely on the propagation of chemical and mechanical surface waves to signal and coordinate active force generation. The complex interplay between surface geometry and contraction wave dynamics remains poorly understood, but it will be essential for the future design of chemically driven soft robots and active materials. Here, we couple prototypical chemical wave and reaction-diffusion models to non-Euclidean shell mechanics to identify and characterize generic features of chemomechanical wave propagation on active deformable surfaces. Our theoretical framework is validated against recent data from contractile wave measurements on ascidian and starfish oocytes, producing good quantitative agreement in both cases. The theory is then applied to illustrate how geometry and preexisting discrete symmetries can be utilized to focus active elastic surface waves. We highlight the practical potential of chemomechanical coupling by demonstrating spontaneous wave-induced locomotion of elastic shells of various geometries. Altogether, our results show how geometry, elasticity, and chemical signaling can be harnessed to construct dynamically adaptable, autonomously moving mechanical surface waveguides.
从组织形态发生到软机器人技术,基本的生物和仿生过程都依赖于化学和机械表面波的传播,以进行信号传递和协调主动力的产生。表面几何形状和收缩波动力学之间的复杂相互作用仍未得到很好的理解,但对于未来化学驱动的软机器人和活性材料的设计至关重要。在这里,我们将典型的化学波和反应扩散模型与非欧几里得壳力学相结合,以识别和描述活性可变形表面上化学机械波传播的通用特征。我们的理论框架与收缩波测量在海鞘和海星卵母细胞上的最新数据进行了验证,两种情况下都取得了很好的定量一致性。然后,该理论被应用于说明如何利用几何形状和预先存在的离散对称性来聚焦主动弹性表面波。我们通过演示各种几何形状的弹性壳的自发波诱导运动来突出化学机械耦合的实际潜力。总之,我们的结果表明,如何利用几何形状、弹性和化学信号来构建动态可适应的自主移动机械表面波导。