Binysh Jack, Wilks Thomas R, Souslov Anton
Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, UK.
School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
Sci Adv. 2022 Mar 11;8(10):eabk3079. doi: 10.1126/sciadv.abk3079.
Active solids consume energy to allow for actuation, shape change, and wave propagation not possible in equilibrium. Whereas active interfaces have been realized across many experimental systems, control of three-dimensional (3D) bulk materials remains a challenge. Here, we develop continuum theory and microscopic simulations that describe a 3D soft solid whose boundary experiences active surface stresses. The competition between active boundary and elastic bulk yields a broad range of previously unexplored phenomena, which are demonstrations of so-called active elastocapillarity. In contrast to thin shells and vesicles, we discover that bulk 3D elasticity controls snap-through transitions between different anisotropic shapes. These transitions meet at a critical point, allowing a universal classification via Landau theory. In addition, the active surface modifies elastic wave propagation to allow zero, or even negative, group velocities. These phenomena offer robust principles for programming shape change and functionality into active solids, from robotic metamaterials down to shape-shifting nanoparticles.
活性固体消耗能量以实现驱动、形状变化和波传播,而这些在平衡状态下是不可能的。尽管在许多实验系统中都实现了活性界面,但对三维(3D)块状材料的控制仍然是一个挑战。在这里,我们发展了连续介质理论和微观模拟,描述了一种三维软固体,其边界经历活性表面应力。活性边界与弹性体之间的竞争产生了一系列以前未被探索的现象,这些现象是所谓的活性弹性毛细作用的表现。与薄壳和囊泡不同,我们发现三维体弹性控制着不同各向异性形状之间的突变转变。这些转变在一个临界点相遇,从而可以通过朗道理论进行通用分类。此外,活性表面改变了弹性波的传播,使得群速度为零,甚至为负。这些现象为将形状变化和功能编程到活性固体中提供了强有力的原理,从机器人超材料到形状可变的纳米颗粒。