Suppr超能文献

具有有效学习算法的树突状神经元模型用于分类、逼近和预测。

Dendritic Neuron Model With Effective Learning Algorithms for Classification, Approximation, and Prediction.

作者信息

Gao Shangce, Zhou Mengchu, Wang Yirui, Cheng Jiujun, Yachi Hanaki, Wang Jiahai

出版信息

IEEE Trans Neural Netw Learn Syst. 2019 Feb;30(2):601-614. doi: 10.1109/TNNLS.2018.2846646. Epub 2018 Jul 10.

Abstract

An artificial neural network (ANN) that mimics the information processing mechanisms and procedures of neurons in human brains has achieved a great success in many fields, e.g., classification, prediction, and control. However, traditional ANNs suffer from many problems, such as the hard understanding problem, the slow and difficult training problems, and the difficulty to scale them up. These problems motivate us to develop a new dendritic neuron model (DNM) by considering the nonlinearity of synapses, not only for a better understanding of a biological neuronal system, but also for providing a more useful method for solving practical problems. To achieve its better performance for solving problems, six learning algorithms including biogeography-based optimization, particle swarm optimization, genetic algorithm, ant colony optimization, evolutionary strategy, and population-based incremental learning are for the first time used to train it. The best combination of its user-defined parameters has been systemically investigated by using the Taguchi's experimental design method. The experiments on 14 different problems involving classification, approximation, and prediction are conducted by using a multilayer perceptron and the proposed DNM. The results suggest that the proposed learning algorithms are effective and promising for training DNM and thus make DNM more powerful in solving classification, approximation, and prediction problems.

摘要

一种模仿人类大脑神经元信息处理机制和过程的人工神经网络(ANN)在许多领域都取得了巨大成功,例如分类、预测和控制。然而,传统的人工神经网络存在许多问题,如难以理解的问题、训练缓慢且困难的问题以及难以扩大规模的问题。这些问题促使我们通过考虑突触的非线性来开发一种新的树突神经元模型(DNM),这不仅是为了更好地理解生物神经元系统,也是为了提供一种更有用的解决实际问题的方法。为了使其在解决问题方面具有更好的性能,首次使用了包括基于生物地理学的优化、粒子群优化、遗传算法、蚁群优化、进化策略和基于种群的增量学习在内的六种学习算法对其进行训练。通过使用田口实验设计方法系统地研究了其用户定义参数的最佳组合。使用多层感知器和所提出的DNM对涉及分类、逼近和预测的14个不同问题进行了实验。结果表明,所提出的学习算法对于训练DNM是有效且有前景的,从而使DNM在解决分类、逼近和预测问题方面更强大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验