Faculty of Engineering, University of Toyama, Toyama-shi 930-8555, Japan.
College of Civil Engineering, Tongji University, Shanghai 200092, China.
Comput Intell Neurosci. 2019 Aug 1;2019:7362931. doi: 10.1155/2019/7362931. eCollection 2019.
By employing a neuron plasticity mechanism, the original dendritic neuron model (DNM) has been succeeded in the classification tasks with not only an encouraging accuracy but also a simple learning rule. However, the data collected in real world contain a lot of redundancy, which causes the process of analyzing data by DNM become complicated and time-consuming. This paper proposes a reliable hybrid model which combines a maximum relevance minimum redundancy (Mr) feature selection technique with DNM (namely, MrDNM) for classifying the practical classification problems. The mutual information-based Mr is applied to evaluate and rank the most informative and discriminative features for the given dataset. The obtained optimal feature subset is used to train and test the DNM for classifying five different problems arisen from medical, physical, and social scenarios. Experimental results suggest that the proposed MrDNM outperforms DNM and other six classification algorithms in terms of accuracy and computational efficiency.
通过采用神经元可塑性机制,原始的树突神经元模型 (DNM) 不仅在分类任务中取得了令人鼓舞的准确性,而且还具有简单的学习规则。然而,实际世界中收集的数据包含大量冗余,这使得 DNM 分析数据的过程变得复杂和耗时。本文提出了一种可靠的混合模型,该模型将最大相关性最小冗余 (Mr) 特征选择技术与 DNM(即 MrDNM)相结合,用于分类实际分类问题。基于互信息的 Mr 用于评估和排序给定数据集的最具信息量和判别力的特征。获得的最佳特征子集用于训练和测试 DNM,以对来自医学、物理和社会场景的五个不同问题进行分类。实验结果表明,所提出的 MrDNM 在准确性和计算效率方面优于 DNM 和其他六种分类算法。