文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多房室时空反向传播的学习高效脉冲神经网络。

Learning-efficient spiking neural networks with multi-compartment spatio-temporal backpropagation.

作者信息

Liu Yuqian, Wang Yuechao, Zhang Chi, Yu Liao, Fang Ying, Chen Feng

机构信息

Department of Automation, Tsinghua University, Beijing 100084, China.

The College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350117, China.

出版信息

iScience. 2025 Jun 3;28(7):112491. doi: 10.1016/j.isci.2025.112491. eCollection 2025 Jul 18.


DOI:10.1016/j.isci.2025.112491
PMID:40703089
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12284053/
Abstract

Spiking neural networks (SNNs) inspired by biological neurons offer energy-efficient and interpretable computation but is limited by the simplistic structure of point neurons. We introduce a multi-compartment spiking neuron model (MCN) with trainable cross-compartment connections that simulate soma-dendrite interactions. Theoretically, we prove that these connections act as spatiotemporal momentum, guiding learning dynamics toward global optima. To leverage this, we propose a multi-compartment spatiotemporal backpropagation (MCST-BP) algorithm that enhances gradient flow stability. Experimental results for multiple benchmark datasets, including S-MNIST, CIFAR-10, Spiking Heidelberg Digits (SHD), and ECG, show that MC-SNNs outperform traditional SNNs in both convergence speed and accuracy. Our work bridges neurobiological structure and computational modeling, providing a theoretical and practical foundation for high-performance brain-inspired learning systems.

摘要

受生物神经元启发的脉冲神经网络(SNN)提供了节能且可解释的计算方式,但受限于点神经元的简单结构。我们引入了一种具有可训练跨隔室连接的多隔室脉冲神经元模型(MCN),该模型模拟了胞体 - 树突相互作用。从理论上讲,我们证明这些连接充当时空动量,引导学习动态朝着全局最优解发展。为了利用这一点,我们提出了一种多隔室时空反向传播(MCST - BP)算法,该算法增强了梯度流稳定性。针对多个基准数据集的实验结果,包括S - MNIST、CIFAR - 10、脉冲海德堡数字(SHD)和心电图(ECG),表明多隔室脉冲神经网络(MC - SNN)在收敛速度和准确性方面均优于传统的脉冲神经网络。我们的工作搭建了神经生物学结构与计算建模之间的桥梁,为高性能脑启发学习系统提供了理论和实践基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f23/12284053/78a22ca21bdf/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f23/12284053/efd44ca9598b/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f23/12284053/7a72ccc2d884/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f23/12284053/8ab37bd1844e/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f23/12284053/a16c4aa8bfc9/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f23/12284053/78a22ca21bdf/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f23/12284053/efd44ca9598b/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f23/12284053/7a72ccc2d884/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f23/12284053/8ab37bd1844e/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f23/12284053/a16c4aa8bfc9/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f23/12284053/78a22ca21bdf/gr4.jpg

相似文献

[1]
Learning-efficient spiking neural networks with multi-compartment spatio-temporal backpropagation.

iScience. 2025-6-3

[2]
Combining aggregated attention and transformer architecture for accurate and efficient performance of Spiking Neural Networks.

Neural Netw. 2025-7-3

[3]
Spiking Neural Networks for Multimodal Neuroimaging: A Comprehensive Review of Current Trends and the NeuCube Brain-Inspired Architecture.

Bioengineering (Basel). 2025-6-9

[4]
ESTSformer: Efficient spatio-temporal spiking transformer.

Neural Netw. 2025-11

[5]
The architecture design and training optimization of spiking neural network with low-latency and high-performance for classification and segmentation.

Neural Netw. 2025-6-21

[6]
Short-Term Memory Impairment

2025-1

[7]
Paired competing neurons improving STDP supervised local learning in Spiking Neural Networks.

Front Neurosci. 2024-7-24

[8]
Brain-inspired learning rules for spiking neural network-based control: a tutorial.

Biomed Eng Lett. 2024-12-2

[9]
Deep predictive coding with bi-directional propagation for classification and reconstruction.

Neural Netw. 2025-11

[10]
Robust Spatiotemporal Prototype Learning for Spiking Neural Networks.

IEEE Trans Neural Netw Learn Syst. 2025-7-4

本文引用的文献

[1]
Hybrid neural networks for continual learning inspired by corticohippocampal circuits.

Nat Commun. 2025-2-2

[2]
Highly efficient neuromorphic learning system of spiking neural network with multi-compartment leaky integrate-and-fire neurons.

Front Neurosci. 2022-9-28

[3]
An Ultrahigh Rate and Stable Zinc Anode by Facet-Matching-Induced Dendrite Regulation.

Adv Mater. 2022-9

[4]
SHEL5K: An Extended Dataset and Benchmarking for Safety Helmet Detection.

Sensors (Basel). 2022-3-17

[5]
Are Dendrites Conceptually Useful?

Neuroscience. 2022-5-1

[6]
Parallel and Recurrent Cascade Models as a Unifying Force for Understanding Subcellular Computation.

Neuroscience. 2022-5-1

[7]
Efficient Spike-Driven Learning With Dendritic Event-Based Processing.

Front Neurosci. 2021-2-19

[8]
The Remarkable Robustness of Surrogate Gradient Learning for Instilling Complex Function in Spiking Neural Networks.

Neural Comput. 2021-3-26

[9]
Spatial Properties of STDP in a Self-Learning Spiking Neural Network Enable Controlling a Mobile Robot.

Front Neurosci. 2020-2-26

[10]
Dendritic action potentials and computation in human layer 2/3 cortical neurons.

Science. 2020-1-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索