Suppr超能文献

基于多房室时空反向传播的学习高效脉冲神经网络。

Learning-efficient spiking neural networks with multi-compartment spatio-temporal backpropagation.

作者信息

Liu Yuqian, Wang Yuechao, Zhang Chi, Yu Liao, Fang Ying, Chen Feng

机构信息

Department of Automation, Tsinghua University, Beijing 100084, China.

The College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350117, China.

出版信息

iScience. 2025 Jun 3;28(7):112491. doi: 10.1016/j.isci.2025.112491. eCollection 2025 Jul 18.

Abstract

Spiking neural networks (SNNs) inspired by biological neurons offer energy-efficient and interpretable computation but is limited by the simplistic structure of point neurons. We introduce a multi-compartment spiking neuron model (MCN) with trainable cross-compartment connections that simulate soma-dendrite interactions. Theoretically, we prove that these connections act as spatiotemporal momentum, guiding learning dynamics toward global optima. To leverage this, we propose a multi-compartment spatiotemporal backpropagation (MCST-BP) algorithm that enhances gradient flow stability. Experimental results for multiple benchmark datasets, including S-MNIST, CIFAR-10, Spiking Heidelberg Digits (SHD), and ECG, show that MC-SNNs outperform traditional SNNs in both convergence speed and accuracy. Our work bridges neurobiological structure and computational modeling, providing a theoretical and practical foundation for high-performance brain-inspired learning systems.

摘要

受生物神经元启发的脉冲神经网络(SNN)提供了节能且可解释的计算方式,但受限于点神经元的简单结构。我们引入了一种具有可训练跨隔室连接的多隔室脉冲神经元模型(MCN),该模型模拟了胞体 - 树突相互作用。从理论上讲,我们证明这些连接充当时空动量,引导学习动态朝着全局最优解发展。为了利用这一点,我们提出了一种多隔室时空反向传播(MCST - BP)算法,该算法增强了梯度流稳定性。针对多个基准数据集的实验结果,包括S - MNIST、CIFAR - 10、脉冲海德堡数字(SHD)和心电图(ECG),表明多隔室脉冲神经网络(MC - SNN)在收敛速度和准确性方面均优于传统的脉冲神经网络。我们的工作搭建了神经生物学结构与计算建模之间的桥梁,为高性能脑启发学习系统提供了理论和实践基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f23/12284053/efd44ca9598b/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验