Suppr超能文献

人工智能应用的黄斑血管密度和神经节细胞/内丛状层厚度及其联合指数。

Macular Vessel Density and Ganglion Cell/Inner Plexiform Layer Thickness and Their Combinational Index Using Artificial Intelligence.

机构信息

Department of Ophthalmology, Pusan National University College of Medicine.

Department of Biostatistics, Clinical Trial Center.

出版信息

J Glaucoma. 2018 Sep;27(9):750-760. doi: 10.1097/IJG.0000000000001028.

Abstract

PURPOSE

To evaluate the relationship between macular vessel density and ganglion cell to inner plexiform layer thickness (GCIPLT) and to compare their diagnostic performance. We attempted to develop a new combined parameter using an artificial neural network.

METHODS

A total of 173 subjects: 100 for the test and 73 for neural net training. The test group consisted of 32 healthy, 33 early, and 35 advanced glaucoma subjects. Macular GCIPLT and vessel density were measured using Spectralis optical coherence tomography and Topcon swept-source optical coherence tomography, respectively. Various regression models were used to investigate the relationships between macular vessel density and GCIPLT. A multilayer neural network with one hidden layer was used to determine a single combined parameter. To compare diagnostic performance, we used the area under the receiver operating characteristic curve (AUROC).

RESULTS

Correlation analyses in all subjects showed a significant correlation between macular vessel density and GCIPLT in all sectors (r=0.27 to 0.56; all Ps≤0.006). The fitness of linear, quadratic, and exponential regression models showed clinically negligible differences (Akaike's information criterion=714.6, 713.8, and 713.3, respectively) and were almost linear. In differentiating normal and early glaucoma, the diagnostic power of macular GCIPLT (AUROC=0.67 to 0.81) was much better than that of macular vessel density (AUROC=0.50 to 0.60). However, when vessel density information was incorporated into GCIPLT using the neural network, the combined parameter (AUROC=0.87) showed significantly enhanced diagnostic performance than all sectors of macular vessel density and GCIPLT (all Ps≤0.043).

CONCLUSIONS

Macular vessel density was significantly decreased in glaucoma patients and showed an almost linear correlation with macular GCIPLT. The diagnostic performance of macular vessel density was much lower than that of macular GCIPLT. However, when incorporated into macular GCIPLT using an artificial neural network, the combined parameter showed better performance than macular GCIPLT alone.

摘要

目的

评估黄斑血管密度与神经节细胞内丛状层厚度(GCIPLT)之间的关系,并比较它们的诊断性能。我们试图使用人工神经网络开发一个新的组合参数。

方法

共纳入 173 名受试者:100 名用于测试,73 名用于神经网络训练。测试组包括 32 名健康人、33 名早期青光眼患者和 35 名晚期青光眼患者。使用 Spectralis 光学相干断层扫描仪和 Topcon 扫频源光学相干断层扫描仪分别测量黄斑 GCIPLT 和血管密度。使用各种回归模型来研究黄斑血管密度与 GCIPLT 之间的关系。使用具有一个隐藏层的多层神经网络来确定单个组合参数。为了比较诊断性能,我们使用了接收器操作特征曲线下的面积(AUROC)。

结果

在所有受试者中,相关性分析显示黄斑血管密度与所有象限的 GCIPLT 之间存在显著相关性(r=0.27 至 0.56;所有 P 值均≤0.006)。线性、二次和指数回归模型的拟合度差异较小(赤池信息量准则分别为 714.6、713.8 和 713.3),几乎呈线性。在区分正常人和早期青光眼患者时,黄斑 GCIPLT 的诊断能力(AUROC 为 0.67 至 0.81)明显优于黄斑血管密度(AUROC 为 0.50 至 0.60)。然而,当使用神经网络将血管密度信息纳入 GCIPLT 时,组合参数(AUROC 为 0.87)的诊断性能明显优于黄斑血管密度和 GCIPLT 的所有象限(所有 P 值均≤0.043)。

结论

青光眼患者的黄斑血管密度显著降低,与黄斑 GCIPLT 呈几乎线性相关。黄斑血管密度的诊断性能明显低于黄斑 GCIPLT。然而,当使用人工神经网络将其纳入黄斑 GCIPLT 时,组合参数的性能优于单独的黄斑 GCIPLT。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验