Suppr超能文献

基于优化的电子顺磁共振成像中稀疏采样数据的图像重建。

Optimization-based image reconstruction from sparsely sampled data in electron paramagnetic resonance imaging.

机构信息

School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, China; Department of Radiation and Cellular Oncology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA; Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Taiyuan, Shanxi 030006, China.

Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.

出版信息

J Magn Reson. 2018 Sep;294:24-34. doi: 10.1016/j.jmr.2018.06.015. Epub 2018 Jun 26.

Abstract

Electron paramagnetic resonance imaging (EPRI) can yield information about the 3-dimensional (3D) spatial distribution of the unpaired-electron-spin density from which the spatial distribution of oxygen concentration within tumor tissue, referred to as the oxygen image or electron paramagnetic resonance (EPR) image in this work, can be derived. Existing algorithms for reconstruction of EPR images often require data collected at a large number of densely sampled projection views, resulting in a prolonged data-acquisition time and consequently numerous practical challenges especially to in vivo animal EPRI. Therefore, a strong interest exists in shortening data-acquisition time through reducing the number of data samples collected in EPRI, and one approach is to acquire data at a reduced number of sparsely distributed projection views from which existing algorithms may reconstruct images with prominent artifacts. In this work, we investigate and develop an optimization-based technique for image reconstruction from data collected at sparsely sampled projection views for reducing scanning time in EPRI. Specifically, we design a convex optimization program in which the EPR image of interest is formulated as a solution and then tailor the Chambolle-Pock (CP) primal-dual algorithm to reconstruct the image by solving the convex optimization program. Using computer-simulated EPRI data from numerical phantoms and real EPRI data collected from physical phantoms, we perform studies on the verification and characterization of the optimization-based technique for EPR image reconstruction. Results of the studies suggest that the technique may yield accurate EPR images from data collected at sparsely distributed projection views, thus potentially enabling fast EPRI with reduced acquisition time.

摘要

电子顺磁共振成像(EPRI)可以提供未配对电子自旋密度的三维(3D)空间分布信息,从中可以得出肿瘤组织内氧浓度的空间分布,在这项工作中被称为氧图像或电子顺磁共振(EPR)图像。现有的 EPR 图像重建算法通常需要在大量密集采样的投影视图中收集数据,这导致数据采集时间延长,因此在体内动物 EPRI 中存在许多实际挑战。因此,通过减少 EPRI 中采集的数据样本数量来缩短数据采集时间的需求非常强烈,一种方法是从稀疏分布的投影视图中采集数据,现有算法可以从这些视图中重建具有明显伪影的图像。在这项工作中,我们研究并开发了一种基于优化的技术,用于从稀疏采样的投影视图中采集数据进行图像重建,以减少 EPRI 中的扫描时间。具体来说,我们设计了一个凸优化程序,其中感兴趣的 EPR 图像被表示为一个解,然后通过求解凸优化程序来定制 Chambolle-Pock (CP) 原始对偶算法来重建图像。使用数值体模的计算机模拟 EPRI 数据和物理体模中收集的真实 EPRI 数据,我们对基于优化的 EPR 图像重建技术进行了验证和特征研究。研究结果表明,该技术可以从稀疏分布的投影视图中采集的数据中获得准确的 EPR 图像,从而有可能实现采集时间缩短的快速 EPRI。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验