Qiao Zhiwei, Liu Peng, Fang Chenyun, Redler Gage, Epel Boris, Halpern Howard
School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi, People's Republic of China.
Department of Big Data and Intelligent Engineering, Shanxi Institute of Technology, Yangquan, Shanxi, People's Republic of China.
Phys Med Biol. 2024 May 30;69(11). doi: 10.1088/1361-6560/ad4a1b.
Electron paramagnetic resonance (EPR) imaging is an advanced in vivo oxygen imaging modality. The main drawback of EPR imaging is the long scanning time. Sparse-view projections collection is an effective fast scanning pattern. However, the commonly-used filtered back projection (FBP) algorithm is not competent to accurately reconstruct images from sparse-view projections because of the severe streak artifacts. The aim of this work is to develop an advanced algorithm for sparse reconstruction of 3D EPR imaging.The optimization based algorithms including the total variation (TV) algorithm have proven to be effective in sparse reconstruction in EPR imaging. To further improve the reconstruction accuracy, we propose the directional TV (DTV) model and derive its Chambolle-Pock solving algorithm.After the algorithm correctness validation on simulation data, we explore the sparse reconstruction capability of the DTV algorithm via a simulated six-sphere phantom and two real bottle phantoms filled with OX063 trityl solution and scanned by an EPR imager with a magnetic field strength of 250 G.Both the simulated and real data experiments show that the DTV algorithm is superior to the existing FBP and TV-type algorithms and a deep learning based method according to visual inspection and quantitative evaluations in sparse reconstruction of EPR imaging.These insights gained in this work may be used in the development of fast EPR imaging workflow of practical significance.
电子顺磁共振(EPR)成像是一种先进的体内氧成像模态。EPR成像的主要缺点是扫描时间长。稀疏视图投影采集是一种有效的快速扫描模式。然而,由于严重的条纹伪影,常用的滤波反投影(FBP)算法无法从稀疏视图投影中准确重建图像。这项工作的目的是开发一种用于三维EPR成像稀疏重建的先进算法。包括总变分(TV)算法在内的基于优化的算法已被证明在EPR成像的稀疏重建中是有效的。为了进一步提高重建精度,我们提出了方向总变分(DTV)模型并推导了其Chambolle-Pock求解算法。在对模拟数据进行算法正确性验证后,我们通过一个模拟的六球体模型和两个填充有OX063三苯甲基溶液并由磁场强度为250 G的EPR成像仪扫描的真实瓶状模型,探索了DTV算法的稀疏重建能力。模拟和真实数据实验均表明,根据视觉检查和定量评估,在EPR成像的稀疏重建中,DTV算法优于现有的FBP和TV型算法以及一种基于深度学习的方法。这项工作中获得的这些见解可用于具有实际意义的快速EPR成像工作流程的开发。