Suppr超能文献

使用二维低场 NMR 对食品进行自动分类。

Automated classification of food products using 2D low-field NMR.

机构信息

Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.

出版信息

J Magn Reson. 2018 Sep;294:44-58. doi: 10.1016/j.jmr.2018.06.011. Epub 2018 Jun 30.

Abstract

In this work, low-field proton (H) and sodium (Na) relaxation and diffusion measurements are used to detect and classify different types of food products. A compact and low-cost system based on a small 0.5 T permanent magnet has been developed to autonomously authenticate such products. The system uses a simple but efficient double-tuned matching network suitable for H/Na NMR. Various machine learning algorithms are used to classify food samples based on T-T and D-T data generated by the system, and the accuracy and prediction speed of these algorithms are studied in detail. The influence of temperature drift upon prediction accuracy is also studied. Experimental results demonstrate reliable classification of cooking oils, milk, and soy sauces.

摘要

在这项工作中,利用低场质子(H)和钠(Na)弛豫和扩散测量来检测和分类不同类型的食品。已经开发了一种基于小型 0.5T 永磁体的紧凑且低成本系统,以自动验证此类产品。该系统使用简单但高效的双调谐匹配网络,适用于 H/Na NMR。使用各种机器学习算法根据系统生成的 T-T 和 D-T 数据对食品样本进行分类,并详细研究了这些算法的准确性和预测速度。还研究了温度漂移对预测精度的影响。实验结果表明,可以可靠地对食用油、牛奶和酱油进行分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验