Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
School of Mechanical Engineering, Southeast University, Nanjing, 211189, China.
Anal Sci. 2023 Jun;39(6):957-968. doi: 10.1007/s44211-023-00303-x. Epub 2023 Mar 10.
Rapid and precise estimation of glycosylated serum protein (GSP) of human serum is of great importance for the treatment and diagnosis of diabetes mellitus. In this study, we propose a novel method for estimation of GSP level based on the combination of deep learning and time domain nuclear magnetic resonance (TD-NMR) transverse relaxation signal of human serum. Specifically, a principal component analysis (PCA)-enhanced one-dimensional convolutional neural network (1D-CNN) is proposed to analyze the TD-NMR transverse relaxation signal of human serum. The proposed algorithm is proved by accurate estimation of GSP level for the collected serum samples. Furthermore, the proposed algorithm is compared with 1D-CNN without PCA, long short-term memory network (LSTM) and some conventional machine learning algorithms. The results indicate that PCA-enhanced 1D-CNN (PC-1D-CNN) has the minimum error. This study proves that proposed method is feasible and superior to estimate GSP level of human serum using TD-NMR transverse relaxation signals.
快速准确地估计人血清中的糖基化血清蛋白 (GSP) 对于糖尿病的治疗和诊断具有重要意义。在这项研究中,我们提出了一种基于深度学习和人血清时域核磁共振 (TD-NMR) 横向弛豫信号相结合的估计 GSP 水平的新方法。具体来说,提出了一种主成分分析 (PCA) 增强的一维卷积神经网络 (1D-CNN) 来分析人血清的 TD-NMR 横向弛豫信号。所提出的算法通过对采集的血清样本进行 GSP 水平的精确估计得到了验证。此外,将所提出的算法与没有 PCA 的 1D-CNN、长短时记忆网络 (LSTM) 和一些传统的机器学习算法进行了比较。结果表明,PCA 增强的 1D-CNN (PC-1D-CNN) 具有最小的误差。这项研究证明了使用 TD-NMR 横向弛豫信号来估计人血清中的 GSP 水平的方法是可行的,并且优于其他方法。