Kühn Tilman, Nonnenmacher Tobias, Sookthai Disorn, Schübel Ruth, Quintana Pacheco Daniel Antonio, von Stackelberg Oyunbileg, Graf Mirja E, Johnson Theron, Schlett Christopher L, Kirsten Romy, Ulrich Cornelia M, Kaaks Rudolf, Kauczor Hans-Ulrich, Nattenmüller Johanna
German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, D-69120, Heidelberg, Germany.
BMC Gastroenterol. 2018 Jul 13;18(1):113. doi: 10.1186/s12876-018-0840-9.
Non-alcoholic fatty liver disease (NAFLD) comprises non-progressive steatosis and non-alcoholic steatohepatitis (NASH), the latter of which may cause cirrhosis and hepatocellular carcinoma (HCC). As NAFLD detection is imperative for the prevention of its complications, we evaluated whether a combination of blood-based biomarkers and anthropometric parameters can be used to predict NAFLD among overweight and obese adults.
143 overweight or obese non-smokers free of diabetes (50% women, age: 35-65 years) were recruited. Anthropometric indices and routine biomarkers of metabolism and liver function were measured to predict magnetic resonance (MR) - derived NAFLD by multivariable logistic regression models. In addition, we evaluated to which degree the use of more novel biomarkers (adiponectin, leptin, resistin, C-reactive protein, TNF-α, IL-6, IL-8 and interferon-γ) could improve prediction models.
NAFLD was best predicted by a combination of age, sex, waist circumference, ALT, HbA1c, and HOMA-IR at an area under the receiver operating characteristic curve (AUROC) of 0.87 (95% CI: 0.81, 0.93) before and 0.85 (95% CI: 0.78, 0.91) after internal bootstrap validation. The use of additional biomarkers of inflammation and metabolism did not improve NAFLD prediction. Previously published indices predicted NAFLD at AUROCs between 0.71 and 0.82.
The AUROC of > 0.8 obtained by our regression model suggests the feasibility of a non-invasive detection of NAFLD by anthropometry and circulating biomarkers, even though further increments in the capacity of prediction models may be needed before NAFLD indices can be applied in routine clinical practice.
非酒精性脂肪性肝病(NAFLD)包括非进展性脂肪变性和非酒精性脂肪性肝炎(NASH),后者可能导致肝硬化和肝细胞癌(HCC)。由于NAFLD的检测对于预防其并发症至关重要,我们评估了基于血液的生物标志物和人体测量参数的组合是否可用于预测超重和肥胖成年人中的NAFLD。
招募了143名超重或肥胖的非吸烟且无糖尿病患者(50%为女性,年龄:35 - 65岁)。测量人体测量指标以及代谢和肝功能的常规生物标志物,通过多变量逻辑回归模型预测磁共振(MR)得出的NAFLD。此外,我们评估了使用更多新型生物标志物(脂联素、瘦素、抵抗素、C反应蛋白、TNF-α、IL-6、IL-8和干扰素-γ)在多大程度上可以改善预测模型。
在接受者操作特征曲线下面积(AUROC)方面,年龄、性别、腰围、ALT、糖化血红蛋白(HbA1c)和胰岛素抵抗稳态模型评估(HOMA-IR)的组合对NAFLD的预测效果最佳,内部自举验证前为0.87(95%可信区间:0.81,0.93),验证后为0.85(95%可信区间:0.78,0.91)。使用额外的炎症和代谢生物标志物并不能改善NAFLD的预测。先前发表的指标在AUROC为0.71至0.82之间预测NAFLD。
我们的回归模型获得的>0.8的AUROC表明,通过人体测量和循环生物标志物进行NAFLD无创检测是可行 的,尽管在NAFLD指标可应用于常规临床实践之前,可能需要进一步提高预测模型的能力。