Suppr超能文献

谁会出现?预测美国常规 HIV 初级保健中患者的失约情况。

Who Will Show? Predicting Missed Visits Among Patients in Routine HIV Primary Care in the United States.

机构信息

Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 2101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA.

Department of Epidemiology, Brown University, Providence, RI, USA.

出版信息

AIDS Behav. 2019 Feb;23(2):418-426. doi: 10.1007/s10461-018-2215-1.

Abstract

Missed HIV medical visits predict poor clinical outcomes. We sought to identify patients at high risk of missing visits. We analyzed 2002-2014 data from six large US HIV clinics. At each visit, we predicted the likelihood of missing the next scheduled visit using demographic, clinical, and patient-reported psychosocial variables. Overall, 10,374 participants contributed 105,628 HIV visits. For 17% of visits, the next scheduled appointment was missed. The strongest predictor of a future missed visit was past-year missed visits. A model with only this predictor had area under the receiver operator curve = 0.65; defining "high risk" as those with any past-year missed visits had 73% sensitivity and 51% specificity in correctly identifying a future missed visit. Inclusion of other clinical and psychosocial predictors only slightly improved performance. Past visit attendance can identify those at increased risk for future missed visits, allowing for proactive allocation of resources to those at greatest risk.

摘要

错过艾滋病病毒医疗随访会导致不良临床结局。我们试图确定高风险的失访患者。我们分析了来自 6 家美国大型艾滋病病毒诊所的 2002-2014 年数据。在每次就诊时,我们使用人口统计学、临床和患者报告的心理社会变量预测下一次预约就诊的可能性。总体而言,10374 名参与者贡献了 105628 次艾滋病病毒就诊。17%的就诊预约被错过。未来错过就诊的最强预测因素是过去一年的就诊失约。仅包含此预测因素的模型,其受试者工作特征曲线下面积为 0.65;将过去一年有任何失约就诊记录的患者定义为“高风险”,则在正确识别未来失约就诊方面的敏感性为 73%,特异性为 51%。纳入其他临床和心理社会预测因素仅略微提高了性能。过去的就诊出勤率可以识别出未来失访风险较高的患者,从而可以为风险最高的患者主动分配资源。

相似文献

引用本文的文献

本文引用的文献

7
Measuring retention in HIV care: the elusive gold standard.评估艾滋病护理中的患者保留率:难以捉摸的金标准。
J Acquir Immune Defic Syndr. 2012 Dec 15;61(5):574-80. doi: 10.1097/QAI.0b013e318273762f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验