Suppr超能文献

桥接关于感知决策的神经和计算观点。

Bridging Neural and Computational Viewpoints on Perceptual Decision-Making.

机构信息

Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Ireland.

Howard Hughes Medical Institute and Department of Neuroscience, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behaviour Institute and Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA.

出版信息

Trends Neurosci. 2018 Nov;41(11):838-852. doi: 10.1016/j.tins.2018.06.005. Epub 2018 Jul 12.

Abstract

Sequential sampling models have provided a dominant theoretical framework guiding computational and neurophysiological investigations of perceptual decision-making. While these models share the basic principle that decisions are formed by accumulating sensory evidence to a bound, they come in many forms that can make similar predictions of choice behaviour despite invoking fundamentally different mechanisms. The identification of neural signals that reflect some of the core computations underpinning decision formation offers new avenues for empirically testing and refining key model assumptions. Here, we highlight recent efforts to explore these avenues and, in so doing, consider the conceptual and methodological challenges that arise when seeking to infer decision computations from complex neural data.

摘要

序贯抽样模型为指导计算和神经生理学研究提供了一个主导性的理论框架,用于知觉决策。虽然这些模型共享一个基本原理,即决策是通过将感官证据积累到一个边界来形成的,但它们有许多形式,可以对选择行为做出相似的预测,尽管它们所调用的机制根本不同。识别反映决策形成的一些核心计算的神经信号,为从复杂的神经数据中推断决策计算提供了新的途径,从而为经验测试和完善关键模型假设提供了新的途径。在这里,我们强调了最近探索这些途径的努力,并在这样做的过程中,考虑了当试图从复杂的神经数据中推断决策计算时出现的概念和方法上的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bb7/6215147/cae664521a2c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验