From the ‡Institute for Research in Immunology and Cancer, H3T 1J4, Québec, Canada.
§University of Montréal, Department of Chemistry, H3T 1J4, Québec, Canada.
Mol Cell Proteomics. 2018 Oct;17(10):2051-2067. doi: 10.1074/mcp.TIR118.000862. Epub 2018 Jul 14.
The depth of proteomic analyses is often limited by the overwhelming proportion of confounding background ions that compromise the identification and quantification of low abundance peptides. To alleviate these limitations, we present a new high field asymmetric waveform ion mobility spectrometry (FAIMS) interface that can be coupled to the Orbitrap Tribrid mass spectrometers. The interface provides several advantages over previous generations of FAIMS devices, including ease of operation, robustness, and high ion transmission. Replicate LC-FAIMS-MS/MS analyses ( = 100) of HEK293 protein digests showed stable ion current over extended time periods with uniform peptide identification on more than 10,000 distinct peptides. For complex tryptic digest analyses, the coupling of FAIMS to LC-MS/MS enabled a 30% gain in unique peptide identification compared with non-FAIMS experiments. Improvement in sensitivity facilitated the identification of low abundance peptides, and extended the limit of detection by almost an order of magnitude. The reduction in chimeric MS/MS spectra using FAIMS also improved the precision and the number of quantifiable peptides when using isobaric labeling with tandem mass tag (TMT) 10-plex reagent. We compared quantitative proteomic measurements for LC-MS/MS analyses performed using synchronous precursor selection (SPS) and LC-FAIMS-MS/MS to profile the temporal changes in protein abundance of HEK293 cells following heat shock for periods up to 9 h. FAIMS provided 2.5-fold increase in the number of quantifiable peptides compared with non-FAIMS experiments (30,848 peptides from 2,646 proteins for FAIMS 12,400 peptides from 1,229 proteins with SPS). Altogether, the enhancement in ion transmission and duty cycle of the new FAIMS interface extended the depth and comprehensiveness of proteomic analyses and improved the precision of quantitative measurements.
蛋白质组学分析的深度通常受到压倒性的背景离子比例的限制,这些背景离子会影响低丰度肽的鉴定和定量。为了缓解这些限制,我们提出了一种新的高场非对称波形离子淌度谱(FAIMS)接口,该接口可以与 Orbitrap Tribrid 质谱仪联用。与以前几代 FAIMS 设备相比,该接口具有几个优势,包括操作简便、坚固耐用和高离子传输率。对 HEK293 蛋白消化物进行的重复 LC-FAIMS-MS/MS 分析(n = 100)显示,在延长的时间段内,离子电流稳定,超过 10000 种独特肽段的肽鉴定具有一致性。对于复杂的胰蛋白酶消化物分析,与 LC-MS/MS 联用的 FAIMS 可使独特肽鉴定增加 30%,而与非 FAIMS 实验相比。灵敏度的提高有助于鉴定低丰度肽,并将检测限延长近一个数量级。使用 FAIMS 还减少了嵌合 MS/MS 谱,从而提高了使用串联质量标签(TMT)10 plex 试剂进行等压标记时的精度和可定量肽的数量。我们比较了使用同步前体选择(SPS)和 LC-FAIMS-MS/MS 进行 LC-MS/MS 分析的定量蛋白质组学测量,以分析 HEK293 细胞在热休克后长达 9 小时内蛋白质丰度的时间变化。与非 FAIMS 实验相比,FAIMS 提供了 2.5 倍的定量肽数量增加(FAIMS 为 30848 个肽段,来自 2646 个蛋白质;SPS 为 12400 个肽段,来自 1229 个蛋白质)。总的来说,新的 FAIMS 接口的离子传输和工作周期的增强扩展了蛋白质组学分析的深度和全面性,并提高了定量测量的精度。